-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_lib.py
195 lines (172 loc) · 6.96 KB
/
process_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from time import time
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
import geopandas
from shapely.geometry import Point
import matplotlib.cm as cm
from sklearn.preprocessing import PowerTransformer
def coord_2_macroarea(coord): # coord: (lon, lat)
x, y = coord
def below(x1, y1, x2, y2):
return (x2 - x1) * (y - y1) <= (y2 - y1) * (x - x1)
if \
x <= -168 or \
x <= -98 and below(-168, 40, -98, 5) or \
x <= -98 and y <= 5:
return 'Pacific'
if \
x <= -28 and below(-94, 86, -28, 46) or \
x <= -28 and y <= 46:
if \
y <= 5 or \
-80 < x and x <= -66 and y <= 13 or \
-66 < x and y <= 11:
return 'SouthAmerica'
return 'NorthAmerica'
if x <= 62:
if \
x <= -3 and y <= 36 or \
-3 < x and x <= 3 and below(-3, 36, 3, 38) or \
3 < x and x <= 11 and y <= 38 or \
11 < x and x <= 13 and below(11, 38, 13, 34) or \
13 < x and x <= 30 and y <= 34 or \
30 < x and x <= 44 and below(30, 34, 44, 11) or \
44 < x and below(44, 11, 62, 17):
return 'Africa'
return 'Eurasia'
if \
x <= 127 and y <= -13 or \
127 < x and x <= 145 and y <= -10 or \
145 < x and x <= 162 and below(145, -10, 162, -30):
return 'Australia'
if \
x <= 97 and below(62, 0, 97, 6) or \
97 < x and x <= 104 and below(97, 6, 104, 0) or \
104 < x and x <= 120 and below(104, 0, 120, 22) or \
120 < x and x <= 123 and y <= 26 or \
123 < x and y <= 22:
return 'Pacific'
return 'Eurasia'
def transform(lst, title='', print_message=False, do_plot=False):
lst = np.array(lst, dtype=float).reshape(-1, 1)
bc = PowerTransformer(method='box-cox')
yj = PowerTransformer(method='yeo-johnson')
offset = (-lst.min() + 0.1) if (lst.min() < 0) else 0
lst_bc = bc.fit(lst + offset).transform(lst + offset).flatten()
lst_yj = yj.fit(lst).transform(lst).flatten()
lambda_bc = round(bc.lambdas_[0], 2)
lambda_yj = round(yj.lambdas_[0], 2)
message = '\n'.join([
title,
'',
'Box-Cox',
'Min: %.2f → %.2f' % (lst.min(), lst_bc.min()),
'Aver: %.2f → %.2f' % (lst.mean(), lst_bc.mean()),
'Max: %.2f → %.2f' % (lst.max(), lst_bc.max()),
'Yeo-Johnson',
'Min: %.2f → %.2f' % (lst.min(), lst_yj.min()),
'Aver: %.2f → %.2f' % (lst.mean(), lst_yj.mean()),
'Max: %.2f → %.2f' % (lst.max(), lst_yj.max()),
])
if print_message:
print(message)
if do_plot:
is_sonority = lst.max() < 20
_, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 7))
axes = axes.flatten()
axes[1].axis('off')
axes[1].text(0, 0, message, fontsize=12)
axes[0].hist(lst, bins=30)
axes[2].hist(lst_bc, bins=30)
axes[3].hist(lst_yj, bins=30)
axes[0].set_title('Original')
axes[2].set_title('Box-Cox' + r' $\lambda$ = {}'.format(lambda_bc))
axes[3].set_title(
'Yeo-Johnson' + r' $\lambda$ = {}'.format(lambda_yj))
if not is_sonority:
axes[0].set_xlim([-20.5, 40.5])
axes[2].set_xlim([-2.5, 3.2])
axes[3].set_xlim([-2.5, 3.2])
plt.tight_layout()
plt.subplots_adjust(left=0.117, right=0.926, wspace=0.367)
plt.show()
return lst_bc, lst_yj, lambda_bc, lambda_yj
def read_data(temperatures_filename, sonorities_filename):
with open(temperatures_filename, 'r') as f:
next(f)
temperatures = [line.strip('\n').split(',') for line in f]
temperatures = [(line[0], [float(i) for i in line[1:]])
for line in temperatures if line[1] != '--']
temperatures = dict(temperatures)
with open(sonorities_filename, 'r') as f:
next(f)
data = [line.strip('\n').split(',') for line in f]
data = [dict(
[
('Name', line[0]),
('Lon', float(line[1])),
('Lat', float(line[2])),
('Macroarea', coord_2_macroarea((float(line[1]), float(line[2])))),
('Family', line[3].split('.')[0]),
('Genus', line[3]),
('WL', float(line[6])),
] + [(f'Index{i}', float(v)) for i, v in enumerate(line[7:])] +
list(process_temperature(temperatures[line[0]]).items())
) for line in data if line[0] in temperatures]
print('Doculects count:', len(data))
return data
def process_temperature(temperatures):
mean_monthly = np.average(np.array(temperatures).reshape(-1, 12), 0)
result = {
'T': np.average(temperatures),
'T_max': max(mean_monthly),
'T_min': min(mean_monthly),
'T_sd': np.std(temperatures)
}
result['T_diff'] = result['T_max'] - result['T_min']
return result
def grouped_by(data, key):
num_keys = [k for k in data[0].keys() if 'Index' in k or 'T' in k or 'WL' in k]
names = set([d[key] for d in data])
return [dict(
[(key, name)] +
([('Family', next(i['Family'] for i in data if i[key] == name))] if key == 'Genus' else []) +
[(k, func([i[k] for i in data if i[key] == name])) for k in num_keys] +
[('Method', method)]
) for name in names for (method, func) in [('mean', np.average), ('median', np.median)]]
def transform_data(data, do_plot=False):
def transform_key(key):
transformed = transform([d[key] for d in data], key, do_plot)[0]
for i, d in enumerate(data):
d[key + '_trans'] = transformed[i]
num_keys = [k for k in data[0].keys() if 'Index' in k or 'T' in k or 'WL' in k]
for k in num_keys:
transform_key(k)
def write_data(data, csv_filename):
# Do not write longitude and latitude
data = sorted(data, key=lambda line: next(iter(line.values())))
keys = [k for k in data[0].keys() if k not in ['Lon', 'Lat']]
result = [list(keys)]
result += [['%.4f' % i[k] if type(i[k]) == np.float64 else i[k]
for k in keys] for i in data]
with open(csv_filename, 'w') as f:
f.writelines([','.join([str(i) for i in line]) + '\n'
for line in result])
def plot_macroareas(data):
world_path = geopandas.datasets.get_path('naturalearth_lowres')
world = geopandas.read_file(world_path)
ax = world.boundary.plot(linewidth=0.3)
geometry = [Point((d['Lon'], d['Lat'])) for d in data]
gdf = geopandas.GeoDataFrame(geometry=geometry)
macroarea_order = ['Pacific', 'SouthAmerica', 'NorthAmerica',
'Africa', 'Eurasia', 'Australia']
values = [macroarea_order.index(d['Macroarea']) / len(macroarea_order)
for d in data]
gdf.plot(ax=ax,
color=cm.gist_rainbow(values),
markersize=0.8,
legend=True)
ax.set_axis_off()
plt.show()