-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path4.prioritized_dqn.py
322 lines (203 loc) · 8.29 KB
/
4.prioritized_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#!/usr/bin/env python
# coding: utf-8
#todo MakeNote1 -> I stacked 3 frames and reshaped the PyTorch wrapper to have a shape (3,1,84,84)
#todo MakeNote2 -> The state and env.observation.shape don't have the same shape
#todo Check this code with original once again
# In[1]:
import math, random
import cv2
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.autograd as autograd
import torch.nn.functional as F
import matplotlib.pyplot as plt
# <h3>Use Cuda</h3>
# In[3]:
USE_CUDA = torch.cuda.is_available()
Variable = lambda *args, **kwargs: autograd.Variable(*args, **kwargs).cuda() if USE_CUDA else autograd.Variable(*args, **kwargs)
# <h2>Prioritized Replay Buffer</h2>
# <p>Prioritized Experience Replay: https://arxiv.org/abs/1511.05952</p>
# In[28]:
class NaivePrioritizedBuffer(object):
def __init__(self, capacity, prob_alpha=0.6):
self.prob_alpha = prob_alpha
self.capacity = capacity
self.buffer = []
self.pos = 0
self.priorities = np.zeros((capacity,), dtype=np.float32)
def push(self, state, action, reward, next_state, done):
assert state.ndim == next_state.ndim
state = np.expand_dims(state, 0)
next_state = np.expand_dims(next_state, 0)
max_prio = self.priorities.max() if self.buffer else 1.0
if len(self.buffer) < self.capacity:
self.buffer.append((state, action, reward, next_state, done))
else:
self.buffer[self.pos] = (state, action, reward, next_state, done)
self.priorities[self.pos] = max_prio
self.pos = (self.pos + 1) % self.capacity
def sample(self, batch_size, beta=0.4):
if len(self.buffer) == self.capacity:
prios = self.priorities
else:
prios = self.priorities[:self.pos]
probs = prios ** self.prob_alpha
probs /= probs.sum()
indices = np.random.choice(len(self.buffer), batch_size, p=probs)
samples = [self.buffer[idx] for idx in indices]
total = len(self.buffer)
weights = (total * probs[indices]) ** (-beta)
weights /= weights.max()
weights = np.array(weights, dtype=np.float32)
batch = list(zip(*samples))
states = np.concatenate(batch[0])
actions = batch[1]
rewards = batch[2]
next_states = np.concatenate(batch[3])
dones = batch[4]
return states, actions, rewards, next_states, dones, indices, weights
def update_priorities(self, batch_indices, batch_priorities):
for idx, prio in zip(batch_indices, batch_priorities):
self.priorities[idx] = prio
def __len__(self):
return len(self.buffer)
# In[5]:
beta_start = 0.4
beta_frames = 1000
beta_by_frame = lambda frame_idx: min(1.0, beta_start + frame_idx * (1.0 - beta_start) / beta_frames)
# <h3>Synchronize current policy net and target net</h3>
# In[12]:
def update_target(current_model, target_model):
target_model.load_state_dict(current_model.state_dict())
# In[13]:
# <h2>Computing Temporal Difference Loss</h2>
# In[14]:
def compute_td_loss(batch_size, beta):
state, action, reward, next_state, done, indices, weights = replay_buffer.sample(batch_size, beta)
state = state.reshape(batch_size * T, 1, state.shape[-2], state.shape[-1])
next_state = next_state.reshape(batch_size * T, 1, state.shape[-2], state.shape[-1])
state = Variable(torch.FloatTensor(np.float32(state)))
next_state = Variable(torch.FloatTensor(np.float32(next_state)))
action = Variable(torch.LongTensor(action))
reward = Variable(torch.FloatTensor(reward))
done = Variable(torch.FloatTensor(done))
weights = Variable(torch.FloatTensor(weights))
q_values = current_model(state)
next_q_values = target_model(next_state)
q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1)
next_q_value = next_q_values.max(1)[0]
expected_q_value = reward + gamma * next_q_value * (1 - done)
loss = (q_value - expected_q_value.detach()).pow(2) * weights
prios = loss + 1e-5
loss = loss.mean()
optimizer.zero_grad()
loss.backward()
replay_buffer.update_priorities(indices, prios.data.cpu().numpy())
optimizer.step()
return loss
# <h1>Atari Environment</h1>
# In[17]:
from common.wrappers import make_atari, wrap_deepmind, wrap_pytorch
# In[18]:
env_id = "FreewayNoFrameskip-v4"
env = make_atari(env_id)
env = wrap_deepmind(env)
env = wrap_pytorch(env)
# In[36]:
T = env.observation_space.shape[0]
print("The number of time steps = ", T)
class CnnDQN(nn.Module):
def __init__(self, input_shape, num_actions):
super(CnnDQN, self).__init__()
self.input_shape = input_shape
self.num_actions = num_actions
self.conv1 = nn.Conv2d(input_shape[1], 32, kernel_size=8, stride=4)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
self.relu2 = nn.ReLU()
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
self.relu3 = nn.ReLU()
self.fc = nn.Sequential(
nn.Linear(9408, 512),
nn.ReLU(),
nn.Linear(512, self.num_actions)
)
def forward(self, x):
x = self.relu1(self.conv1(x))
x = self.relu2(self.conv2(x))
x = self.relu3(self.conv3(x))
n,c,h,w = x.shape
x = x.reshape(n//T,T,c,h,w)
x = x.view(x.size(0), -1)
# todo MakeNote3 -> Changed the shape in x.view to get back 32 states
x = self.fc(x)
return x
def feature_size(self):
return self.features(autograd.Variable(torch.zeros(1, *self.input_shape))).view(1, -1).size(1)
def act(self, state, epsilon):
if random.random() > epsilon:
state = Variable(torch.FloatTensor(np.float32(state)), volatile=True)
q_value = self.forward(state)
action = q_value.max(1)[1].data[0]
else:
action = random.randrange(env.action_space.n)
return action
# In[37]:
current_model = CnnDQN(env.observation_space.shape, env.action_space.n)
target_model = CnnDQN(env.observation_space.shape, env.action_space.n)
if USE_CUDA:
current_model = current_model.cuda()
target_model = target_model.cuda()
optimizer = optim.Adam(current_model.parameters(), lr=0.0001)
replay_initial = 10000
replay_buffer = NaivePrioritizedBuffer(100000)
update_target(current_model, target_model)
# <h3>Epsilon greedy exploration</h3>
# In[38]:
epsilon_start = 1.0
epsilon_final = 0.01
epsilon_decay = 30000
epsilon_by_frame = lambda frame_idx: epsilon_final + (epsilon_start - epsilon_final) * math.exp(-1. * frame_idx / epsilon_decay)
# In[27]:
beta_start = 0.4
beta_frames = 100000
beta_by_frame = lambda frame_idx: min(1.0, beta_start + frame_idx * (1.0 - beta_start) / beta_frames)
# In[41]:
# <h3>Training</h3>
# In[42]:
num_frames = 1400000
batch_size = 32
gamma = 0.99
losses = []
reward_step = np.empty(shape = num_frames)
all_rewards = []
episode_reward = 0
state = np.expand_dims(env.reset(), axis = 1)
for frame_idx in range(1, num_frames + 1):
print("Frame = ", frame_idx)
epsilon = epsilon_by_frame(frame_idx)
action = current_model.act(state, epsilon)
next_state, reward, done, _ = env.step(action)
next_state = np.expand_dims(next_state, axis = 1)
replay_buffer.push(state, action, reward, next_state, done)
state = next_state
episode_reward += reward
reward_step[frame_idx - 1] = reward
if done:
state = np.expand_dims(env.reset(), axis = 1)
all_rewards.append(episode_reward)
np.savetxt('pr_dqn.out', all_rewards, delimiter=',')
episode_reward = 0
if len(replay_buffer) > replay_initial:
beta = beta_by_frame(frame_idx)
loss = compute_td_loss(batch_size, beta)
losses.append(loss.data)
if frame_idx % 1000 == 0:
update_target(current_model, target_model)
if frame_idx % 100000 == 0:
print("Frame Index = ", frame_idx)
np.savetxt('pr_dqn_step.out', reward_step, delimiter=',')
# In[ ]: