-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsac_load.py
141 lines (121 loc) · 4.5 KB
/
sac_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Following the algorithm from here - https://spinningup.openai.com/en/latest/algorithms/sac.html
#Took ideas from -
#1. https://github.com/higgsfield/RL-Adventure-2/blob/master/7.soft%20actor-critic.ipynb
#2. https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py
#3. https://github.com/openai/spinningup/blob/master/spinup/algos/pytorch/sac/core.py
# Here we import all libraries
#todo How do I deal with starting states? Spinning Up spoke about applying entropy to starting states.
import numpy as np
import gym
import matplotlib.pyplot as plt
import os
import torch
import random
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from collections import deque
from torch.distributions.normal import Normal
import torchvision as tv
import torch.nn.functional as F
import torch.optim as optim
import sys
value_lr = 2.5e-4
policy_lr = 2.5e-4
batch_size = 500
episodes = 1000
ent_coeff = 0.2 #taken from cleanrl
gamma = 0.99
Q_learning_rate = 2.5e-4
replay_buffer = deque(maxlen=10000000)
mem_size = 1000
polyak = 0.995
PATH = "./SAC_1/"
tot_rewards = []
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
env = gym.make("Pendulum-v1")
act_limit = env.action_space.high[0]
act_rescale = (env.action_space.high - env.action_space.low) / 2.0
act_bias = (env.action_space.high + env.action_space.low) / 2.0
print("act_rescale = ", act_rescale)
print("act_bias = ", act_bias)
# print("act_limit = ", act_limit)
# print("env.observation_space.shape = ", env.observation_space.shape[0])
# print("env = ", env.action_space.shape[0])
class Q_function(nn.Module):
def __init__(self, state_size, action_size, init_w = 3e-3):
super(Q_function, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.linear_relu_stack = nn.Sequential(
nn.Linear(state_size+action_size, 300),
nn.ReLU(),
nn.Linear(300, 128),
nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU()
)
self.last_linear = nn.Linear(128, 1)
self.last_linear.weight.data.uniform_(-init_w, init_w)
self.last_linear.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
x = torch.cat((state, action),1)
x = self.linear_relu_stack(x)
x = self.last_linear(x)
return x
LOG_STD_MAX = 2
LOG_STD_MIN = -5
#Took this network from cleanrl
class PolicyNetwork(nn.Module):
def __init__(self, dim_state, dim_action, act_limit, init_w=3e-3):
super(PolicyNetwork,self).__init__()
self.linear1 = nn.Linear(dim_state, 256)
self.linear2 = nn.Linear(256, 256)
self.mean = nn.Linear(256,1)
self.std = nn.Linear(256,1)
def forward(self, x):
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
mean = self.mean(x)
std = self.std(x)
#todo Fix this
std = torch.tanh(std)
normal = torch.distributions.Normal(mean, 2)
x_t = normal.rsample()
y_t = torch.tanh(x_t)
action = y_t
log_prob = normal.log_prob(x_t)
# Enforcing Action Bound
log_prob -= torch.log(act_limit * (1 - y_t.pow(2)) + 1e-6)
log_prob = log_prob.sum(1, keepdim=True)
mean = torch.tanh(mean) * act_limit
return action, log_prob
Q1 = Q_function(env.observation_space.shape[-1], 1).to(device)
Q2 = Q_function(env.observation_space.shape[-1], 1).to(device)
policy = PolicyNetwork(env.observation_space.shape[0], 2, act_limit).to(device)
policy.load_state_dict(torch.load(PATH))
Q1.load_state_dict(torch.load(PATH))
Q2.load_state_dict(torch.load(PATH))
check_learning_start = True
for i in range(episodes):
print("i = ", i)
state = torch.tensor(env.reset(), dtype=torch.float32).unsqueeze(0)
eps_rew = 0
done = False
while not done:
action = policy(state.to(device))[0].cpu().detach().numpy().reshape(-1)
next_state, reward, done, _ = env.step(action)
# print("reward = ", reward)
replay_buffer.append((state, next_state, reward, done, action))
eps_rew += reward
if done:
tot_rewards.append(eps_rew)
break
state = torch.tensor(next_state, dtype=torch.float32).squeeze().unsqueeze(0)
print("Episode reward = ", eps_rew)
tot_rewards.append(eps_rew)
if(i%10==0 and i>0):
plt.scatter(np.arange(len(tot_rewards)), tot_rewards)
plt.show(block=False)
plt.pause(3)
plt.close()