-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo_copied_from_reddit.py
284 lines (247 loc) · 10.8 KB
/
ppo_copied_from_reddit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import numpy as np
import gym
import torch
import random
from torch import nn
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
import matplotlib.pyplot as plt
env = gym.make('CartPole-v1')
env.seed(0)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
learning_rate = 2.5e-4
episodes = 10000
gamma = 0.99
clip = 0.2
# No idea whether these hyperparameters are good
ppo_batch = 5
training_iters = 4
# dim_action = env.action_space.shape[0]
dim_action = env.action_space.n
class Actor(nn.Module):
def __init__(self, state_size, action_size):
super(Actor, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.linear_relu_stack = nn.Sequential(
nn.Linear(state_size, 128),
nn.ReLU(),
# nn.Linear(300, 128),
# nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, action_size),
nn.Softmax(dim=-1)
)
def forward(self, x):
x = self.linear_relu_stack(x)
return x
class Critic(nn.Module):
def __init__(self, state_size, action_size):
super(Critic, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.linear_stack = nn.Sequential(
nn.Linear(state_size, 128),
nn.ReLU(),
# nn.Linear(300, 128),
# nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, 1)
)
def forward(self, x):
x = self.linear_stack(x)
return x
# def rollout():
# transitions = []
# rtgs_list = []
# for i in range(5): # 100 episodes should be good?
# # obs = torch.tensor(env.reset(), dtype=torch.float32).unsqueeze(0)
# obs = env.reset()
# if isinstance(obs, tuple):
# obs = obs[0]
# tot_rewards = 0
#
# #### SERIOUSLY why are we emptying the data it should be initialised before the for loop?
# # transitions = []
# iter = 0
# done = False
# trunc = False
# rewards = []
# with torch.no_grad():
# while not done and not trunc:
# # obs_tensor uses obs instead of next_state
# obs_tensor = torch.tensor(obs, dtype=torch.float32, device=device).unsqueeze(0)
# act_probs = torch.distributions.Categorical(actor(obs_tensor))
# # act_probs = torch.distributions.Categorical(actor(obs.to(device)))
# action = act_probs.sample()
#
# ## action in device , use it to calculate log_prob before moving it to cpu
# log_prob = act_probs.log_prob(action)
# log_prob = log_prob.cpu().numpy()
# # no need to detach now
# # action = action.cpu().detach().numpy()
# # action = action.cpu().numpy()
# action = action.cpu().numpy()[0] # take first action from a list that contains only 1 action :S
# # next_state, reward, done, info = env.step(action)
# next_state, reward, done, trunc, info = env.step(action)
# # action = torch.tensor(action, dtype=torch.float32).to(device)
#
# ##### CRITICAL
# # rewards to go needs future rewards ,not past rewards
# # tot_rewards += np.power(gamma, iter) * reward
# tot_rewards += reward
# iter += 1
#
# # we do not need the total_reward
# # transitions.append((obs, action, log_prob, tot_rewards))
# rewards.append(reward)
# # add the reward instead to calculate rtgs
# transitions.append((obs, action, log_prob))
# # added this to let our next_State be our state
# obs = next_state
#
# reversed_rtgs = []
# reverse_rtg = 0
# for r in reversed(rewards):
# reverse_rtg = reverse_rtg * gamma + r
# reversed_rtgs.append(reverse_rtg)
#
# for rtg in reversed(reversed_rtgs):
# rtgs_list.append(rtg)
# print("Episode Reward = ", tot_rewards)
#
# # d = zip(transitions)
# obs_ar, act_ar, log_probs_ar = list(zip(*transitions))
# rtgs_array = np.array(rtgs_list)
#
# # batch_obs = torch.Tensor([s.numpy() for (s, a, a_p, r) in transitions]).to(device)
# # # print("batch_obs shape = ", np.array(batch_obs).shape)
# # batch_act = torch.Tensor([a for (s, a, a_p, r) in transitions]).to(device)
# # batch_log_probs = torch.Tensor([a_p for (s, a, a_p, r) in transitions]).to(device)
# # # batch_rtgs = torch.Tensor([r for (s, a, a_p, r) in transitions]).flip(dims = (0,)).to(device)
#
# batch_obs = torch.tensor(obs_ar, dtype=torch.float32, device=device)
# batch_act = torch.tensor(act_ar, dtype=torch.int32, device=device).squeeze()
# batch_log_probs = torch.tensor(log_probs_ar, dtype=torch.float32, device=device).squeeze()
# batch_rtgs = torch.tensor(rtgs_array, dtype=torch.float32, device=device).squeeze()
# return batch_obs, batch_act, batch_log_probs, batch_rtgs
def rollout():
transitions = []
disc_reward_list = []
rtgs_list = []
for i in range(ppo_batch):
obs = env.reset()
# obs = torch.tensor(env.reset(), dtype=torch.float32).unsqueeze(0)
tot_rewards = 0
done = False
iter = 0
rewards = []
while not done:
obs = torch.tensor(obs, dtype=torch.float32, device=device).unsqueeze(0)
act_probs = torch.distributions.Categorical(actor(obs.to(device)))
action = act_probs.sample().squeeze()
log_prob = act_probs.log_prob(action)
log_prob = torch.tensor(log_prob, dtype=torch.float32, device=device)
action = action.cpu().detach().numpy()
next_state, reward, done, info = env.step(action)
action = torch.tensor(action, dtype=torch.float32).to(device)
rewards.append(reward)
tot_rewards += reward
iter += 1
transitions.append((obs.cpu().detach().numpy(), action.cpu().detach().numpy(), log_prob.cpu().detach().numpy()))
obs = next_state
print("tot_rewards = ", tot_rewards)
# eps_rew = 0
# eps_rew_list = []
# for reward in reversed(rewards):
# eps_rew = eps_rew*gamma + reward
# eps_rew_list.append(eps_rew)
#
# for rtgs in reversed(eps_rew_list):
# disc_reward_list.append(rtgs)
reversed_rtgs = []
reverse_rtg = 0
for r in reversed(rewards):
reverse_rtg = reverse_rtg * gamma + r
reversed_rtgs.append(reverse_rtg)
for rtg in reversed(reversed_rtgs):
rtgs_list.append(rtg)
print("Episode Reward = ", tot_rewards)
batch_obs, batch_act, batch_log_probs = list(zip(*transitions))
batch_obs = torch.tensor(np.array(batch_obs).reshape(-1,4), dtype=torch.float32, device=device)
batch_act = torch.tensor(np.array(batch_act), dtype=torch.float32, device=device)
print("batch_act = ", batch_act)
batch_log_probs = torch.tensor(np.array(batch_log_probs).reshape(-1), dtype=torch.float32, device=device)
# batch_obs = torch.Tensor([s for (s, a, a_p) in transitions]).to(device)
# batch_act = torch.Tensor([a for (s, a, a_p) in transitions]).to(device)
# batch_log_probs = torch.Tensor([a_p for (s, a, a_p) in transitions]).to(device)
batch_rtgs = torch.Tensor(rtgs_list).to(device)
return batch_obs, batch_act, batch_log_probs, batch_rtgs
actor = Actor(env.observation_space.shape[0], env.action_space.n).to(device)
critic = Critic(env.observation_space.shape[0], dim_action).to(device)
policy_opt = torch.optim.Adam(params=actor.parameters(), lr=learning_rate)
value_opt = torch.optim.Adam(params=critic.parameters(), lr=learning_rate)
score = []
for i in range(episodes):
print("i = ", i)
all_obs, all_actions, all_log_probs, all_rtgs = rollout()
# if we do not need grad , then torch.no_grad is faster and use less memory "don't quote me on that lol"
with torch.no_grad():
# no need to detach now no grads
value = critic(all_obs)
# no need to detach because we calulated value using no_grad settings
all_A_k = all_rtgs - value.squeeze()
# normalizing the advantage is a good thing you can skip it thought
all_A_k = (all_A_k - all_A_k.mean()) / all_A_k.std() + 1e-8
# NOTE use detach if you calculated value without using no_grad
# todo Why are we detaching value ? detach returns same tensor but without grads , so when calling backward and step it won't change the critic which is used to calculate the value we are using the advantage to optimize the actor , not the other way around
# A_k = batch_rtgs - value.squeeze().detach()
batch_size = len(all_obs) // training_iters
for _ in range(4):
indices = torch.randint(len(all_obs), size=(batch_size,))
batch_obs = all_obs[indices]
batch_actions = all_actions[indices]
batch_log_probs = all_log_probs[indices]
batch_rtgs = all_rtgs[indices]
batch_A_k = all_A_k[indices]
for _ in range(training_iters):
value = critic(batch_obs).squeeze()
act_probs = torch.distributions.Categorical(actor(batch_obs))
action = act_probs.sample()
log_probs = act_probs.log_prob(batch_actions).squeeze()
ratios = torch.exp(log_probs - batch_log_probs)
surr1 = ratios * batch_A_k
surr2 = torch.clamp(ratios, 1 - clip, 1 + clip) * batch_A_k
actor_loss = -torch.min(surr1, surr2).mean()
critic_loss = (value - batch_rtgs).pow(2).mean()
# todo No idea why we are doing retain_graph = True
policy_opt.zero_grad()
actor_loss.backward(retain_graph=True)
policy_opt.step()
value_opt.zero_grad()
critic_loss.backward(retain_graph=True)
value_opt.step()
# for _ in range(training_iters):
# value = critic(all_obs).squeeze()
# act_probs = torch.distributions.Categorical(actor(all_obs))
#
# action = act_probs.sample()
# log_probs = act_probs.log_prob(all_actions).squeeze()
# ratios = torch.exp(log_probs - all_log_probs)
# surr1 = ratios * all_A_k
# surr2 = torch.clamp(ratios, 1 - clip, 1 + clip) * all_A_k
#
# actor_loss = -torch.min(surr1, surr2).mean()
# critic_loss = (value - all_rtgs).pow(2).mean()
#
# # todo No idea why we are doing retain_graph = True
# policy_opt.zero_grad()
# actor_loss.backward(retain_graph=True)
# policy_opt.step()
#
# value_opt.zero_grad()
# critic_loss.backward(retain_graph=True)
# value_opt.step()