-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo.py
204 lines (154 loc) · 6.73 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#Modified this code - https://github.com/DeepReinforcementLearning/DeepReinforcementLearningInAction/blob/master/Chapter%204/Ch4_book.ipynb
#Also, modified this code - https://github.com/higgsfield/RL-Adventure-2/blob/master/1.actor-critic.ipynb
# Also, modified this code - https://github.com/ericyangyu/PPO-for-Beginners/blob/9abd435771aa84764d8d0d1f737fa39118b74019/ppo.py#L151
import numpy as np
import gym
import torch
import random
from torch import nn
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
import matplotlib.pyplot as plt
env = gym.make('CartPole-v1')
env.seed(0)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
learning_rate = 2.5e-4
episodes = 10000
gamma = 0.99
clip = 0.2
#No idea whether these hyperparameters are good
ppo_batch = 5
training_iters = 4
# dim_action = env.action_space.shape[0]
dim_action = env.action_space.n
class Actor(nn.Module):
def __init__(self, state_size, action_size):
super(Actor, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.linear_relu_stack = nn.Sequential(
nn.Linear(state_size, 128),
nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, action_size),
nn.Softmax(dim=-1))
def forward(self,x):
x = self.linear_relu_stack(x)
return x
class Critic(nn.Module):
def __init__(self, state_size, action_size):
super(Critic, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.linear_stack = nn.Sequential(
nn.Linear(state_size, 300),
nn.ReLU(),
nn.Linear(300, 128),
nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, 1)
)
def forward(self, x):
x = self.linear_stack(x)
return x
def rollout():
transitions = []
rtgs_list = []
for i in range(5): # 100 episodes should be good?
# obs = torch.tensor(env.reset(), dtype=torch.float32).unsqueeze(0)
obs = env.reset()
if isinstance(obs, tuple):
obs = obs[0]
tot_rewards = 0
#### SERIOUSLY why are we emptying the data it should be initialised before the for loop?
# transitions = []
iter = 0
done = False
trunc = False
rewards = []
with torch.no_grad():
while not done:
# obs_tensor uses obs instead of next_state
obs_tensor = torch.tensor(obs, dtype=torch.float32, device=device).unsqueeze(0)
act_probs = torch.distributions.Categorical(actor(obs_tensor))
# act_probs = torch.distributions.Categorical(actor(obs.to(device)))
action = act_probs.sample()
## action in device , use it to calculate log_prob before moving it to cpu
log_prob = act_probs.log_prob(action)
log_prob = log_prob.cpu().numpy()
# no need to detach now
# action = action.cpu().detach().numpy()
# action = action.cpu().numpy()
action = action.cpu().numpy()[0] # take first action from a list that contains only 1 action :S
# next_state, reward, done, info = env.step(action)
next_state, reward, done, _ = env.step(action)
# action = torch.tensor(action, dtype=torch.float32).to(device)
##### CRITICAL
# rewards to go needs future rewards ,not past rewards
# tot_rewards += np.power(gamma, iter) * reward
tot_rewards += reward
iter += 1
# we do not need the total_reward
# transitions.append((obs, action, log_prob, tot_rewards))
rewards.append(reward)
# add the reward instead to calculate rtgs
transitions.append((obs, action, log_prob))
# added this to let our next_State be our state
obs = next_state
reversed_rtgs = []
reverse_rtg = 0
for r in reversed(rewards):
reverse_rtg = reverse_rtg * gamma + r
reversed_rtgs.append(reverse_rtg)
for rtg in reversed(reversed_rtgs):
rtgs_list.append(rtg)
print("Episode Reward = ", tot_rewards)
# d = zip(transitions)
obs_ar, act_ar, log_probs_ar = list(zip(*transitions))
rtgs_array = np.array(rtgs_list)
# batch_obs = torch.Tensor([s.numpy() for (s, a, a_p, r) in transitions]).to(device)
# # print("batch_obs shape = ", np.array(batch_obs).shape)
# batch_act = torch.Tensor([a for (s, a, a_p, r) in transitions]).to(device)
# batch_log_probs = torch.Tensor([a_p for (s, a, a_p, r) in transitions]).to(device)
# # batch_rtgs = torch.Tensor([r for (s, a, a_p, r) in transitions]).flip(dims = (0,)).to(device)
batch_obs = torch.tensor(obs_ar, dtype=torch.float32, device=device)
batch_act = torch.tensor(act_ar, dtype=torch.int32, device=device).squeeze()
batch_log_probs = torch.tensor(log_probs_ar, dtype=torch.float32, device=device).squeeze()
batch_rtgs = torch.tensor(rtgs_array, dtype=torch.float32, device=device).squeeze()
return batch_obs, batch_act, batch_log_probs, batch_rtgs
actor = Actor(env.observation_space.shape[0], env.action_space.n).to(device)
critic = Critic(env.observation_space.shape[0], dim_action).to(device)
policy_opt = torch.optim.Adam(params = actor.parameters(), lr = learning_rate)
value_opt = torch.optim.Adam(params = critic.parameters(), lr = learning_rate)
score = []
for i in range(episodes):
print("i = ", i)
batch_obs, batch_act, batch_log_probs, batch_rtgs = rollout()
value = critic(batch_obs)
# todo Why are we detaching value
A_k = batch_rtgs - value.squeeze().detach()
A_k = (A_k - A_k.mean())/A_k.std() + 1e-8
for _ in range(training_iters):
value = critic(batch_obs).squeeze()
assert(value.ndim==1)
policy = actor(batch_obs).squeeze()
act_probs = torch.distributions.Categorical(policy)
log_probs = act_probs.log_prob(batch_act).squeeze()
ratios = torch.exp(log_probs - batch_log_probs)
assert(ratios.ndim==1)
surr1 = ratios*A_k
assert (surr1.ndim == 1)
surr2 = torch.clamp(ratios, 1 - clip, 1 + clip)*A_k
assert (surr2.ndim == 1)
actor_loss = -torch.min(surr1, surr2).mean()
critic_loss = (value - batch_rtgs).pow(2).mean()
#todo No idea why we are doing retain_graph = True
policy_opt.zero_grad()
actor_loss.backward(retain_graph=True)
policy_opt.step()
value_opt.zero_grad()
critic_loss.backward(retain_graph=True)
value_opt.step()