-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmbrl.py
97 lines (79 loc) · 2.94 KB
/
mbrl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import gymnasium as gym
import torch.nn as nn
import matplotlib.pyplot as plt
from collections import deque
import random
import torch
class Model(nn.Module):
def __init__(self, state_size, action_size):
super(Model,self).__init__()
self.linear1 = nn.Linear(state_size, 100)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(100, reward_space)
self.linear3 = nn.Linear(100, state_size)
def forward(self,x ):
x = self.linear1(x)
x = self.relu(x)
reward = self.linear2(x)
next_state = self.linear3(x)
return reward, next_state
env = gym.make("CliffWalking-v0")
mem_size = 5000
episodes = 500
eps = 1.0
learning_rate = 0.1
discount_factor = 0.99
reward_space = 1
replay_buffer = deque(maxlen=mem_size)
def MBRL(eps):
tot_rewards = []
buffer = []
n_iters = 500
Q = np.zeros((env.observation_space.n, env.action_space.n))
model = Model(state_size= np.array(1),action_size=np.array(1))
opt = torch.optim.Adam(params=model.parameters(), lr=learning_rate)
for i in range(episodes):
print("episode = ", i)
state = env.reset()[0]
done = False
steps = 0
eps_reward = 0
while not done and steps < 50:
if np.random.uniform(0, 1) < eps:
action = env.action_space.sample()
else:
action = np.argmax(Q[state, :])
next_state, reward, terminated, truncated, info = env.step(action)
buffer.append((state, action))
Q[state, action] = Q[state, action] + learning_rate * (
reward + discount_factor * np.max(Q[next_state, :]) - Q[state, action])
replay_buffer.append((state, action, reward, next_state))
eps = eps / (1 + 0.001)
eps_reward += reward
if terminated:
break
state = next_state
steps += 1
tot_rewards.append(eps_reward)
for _ in range(n_iters):
state, action, reward, next_state= zip(*random.sample(replay_buffer, 1))
tensor_state = torch.tensor(np.array(state[0]).reshape(1, -1), dtype=torch.float32)
sampled_reward, sampled_next_state = model(tensor_state)
if(int(sampled_next_state) == next_state):
loss_state = 0
else:
loss_state = 1
loss = loss_state + (sampled_reward.detach().numpy()[0][0] - reward[0])
loss = torch.tensor(np.array(loss), requires_grad=True)
opt.zero_grad()
loss.backward()
opt.step()
Q[state, action] = Q[state, action] + learning_rate * (
sampled_reward.detach().numpy() + discount_factor * np.max(Q[int(sampled_next_state.detach().numpy()), :]) - Q[
state, action])
return tot_rewards
dyna_returns = MBRL(eps)
plt.plot(dyna_returns, label='dyna')
plt.legend()
plt.show()