Skip to content

Latest commit

 

History

History
107 lines (74 loc) · 3.62 KB

regnetx-3.2gf.md

File metadata and controls

107 lines (74 loc) · 3.62 KB

regnetx-3.2gf

Use Case and High-Level Description

The regnetx-3.2gf model is one of the RegNetX design space models designed to perform image classification. The RegNet design space provides simple and fast networks that work well across a wide range of flop regimes. This model was pretrained in PyTorch*. All RegNet classification models have been pretrained on the ImageNet* dataset. For details about this family of models, check out the Codebase for Image Classification Research.

Specification

Metric Value
Type Classification
GFLOPs 6.3893
MParams 15.2653
Source framework PyTorch*

Accuracy

Metric Original model Converted model
Top 1 78.15% 78.15%
Top 5 94.09% 94.09%

Input

Original model

Image, name - data, shape - 1,3,224,224, format is B,C,H,W where:

  • B - batch size
  • C - channel
  • H - height
  • W - width

Channel order is BGR. Mean values - [103.53,116.28,123.675], scale values - [57.375,57.12,58.395].

Converted model

Image, name - data, shape - 1,3,224,224, format is B,C,H,W where:

  • B - batch size
  • C - channel
  • H - height
  • W - width

Channel order is BGR

Output

Original model

Object classifier according to ImageNet classes, name - prob, shape - 1,1000, output data format is B,C where:

  • B - batch size
  • C - Predicted probabilities for each class in [0, 1] range

Converted model

Object classifier according to ImageNet classes, name - prob, shape - 1,1000, output data format is B,C where:

  • B - batch size
  • C - Predicted probabilities for each class in [0, 1] range

Download a Model and Convert it into Inference Engine Format

You can download models and if necessary convert them into Inference Engine format using the Model Downloader and other automation tools as shown in the examples below.

An example of using the Model Downloader:

python3 <omz_dir>/tools/downloader/downloader.py --name <model_name>

An example of using the Model Converter:

python3 <omz_dir>/tools/downloader/converter.py --name <model_name>

Legal Information

The original model is distributed under the following license:

MIT License

Copyright (c) Facebook, Inc. and its affiliates.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.