The "efficientdet-d0-tf" model is one of the EfficientDet models designed to perform object detection. This model was pretrained in TensorFlow*. All the EfficientDet models have been pretrained on the MSCOCO* image database. For details about this family of models, check out the Google AutoML [repository] (https://github.com/google/automl/tree/master/efficientdet).
Metric | Value |
---|---|
Type | Object detection |
GFLOPs | 2.54 |
MParams | 3.9 |
Source framework | TensorFlow* |
Metric | Converted model |
---|---|
COCO* mAP (0.5:0.05:0.95) | 31.95% |
Image, name - image_arrays
, shape - [1x512x512x3]
, format is [BxHxWxC]
, where:
B
- batch sizeH
- heightW
- widthC
- channel
Channel order is RGB
.
Image, name - image_arrays/placeholder_port_0
, shape - [1x3x512x512]
, format is [BxCxHxW]
, where:
B
- batch sizeC
- channelH
- heightW
- width
Channel order is BGR
.
The array of summary detection information, name: detections
, shape: [1, N, 7], where N is the number of detected
bounding boxes. For each detection, the description has the format:
[image_id
, y_min
, x_min
, y_max
, x_max
, confidence
, label
],
where:
- image_id
- ID of the image in the batch
- (x_min
, y_min
) - coordinates of the top left bounding box corner
- (x_max
, y_max
) - coordinates of the bottom right bounding box corner
- confidence
- confidence for the predicted class
- label
- predicted class ID, in range [1, 91], mapping to class names provided in <omz_dir>/data/dataset_classes/coco_91cl.txt
file
The array of summary detection information, name: detections
, shape: [1, 1, N, 7], where N is the number of detected
bounding boxes. For each detection, the description has the format:
[image_id
, label
, conf
, x_min
, y_min
, x_max
, y_max
],
where:
- image_id
- ID of the image in the batch
- label
- predicted class ID, in range [0, 90], mapping to class names provided in <omz_dir>/data/dataset_classes/coco_91cl.txt
file
- conf
- confidence for the predicted class
- (x_min
, y_min
) - coordinates of the top left bounding box corner (coordinates stored in normalized format, in range [0, 1])
- (x_max
, y_max
) - coordinates of the bottom right bounding box corner (coordinates stored in normalized format, in range [0, 1])
You can download models and if necessary convert them into Inference Engine format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
python3 <omz_dir>/tools/downloader/downloader.py --name <model_name>
An example of using the Model Converter:
python3 <omz_dir>/tools/downloader/converter.py --name <model_name>
The original model is distributed under the Apache License, Version 2.0. A copy of the license is provided in APACHE-2.0-TF-AutoML.txt.