-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebui.py
301 lines (231 loc) · 7.39 KB
/
webui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
import scipy
from diffusers.pipelines.audioldm2.pipeline_audioldm2 import AudioLDM2Pipeline
from diffusers.pipelines.pipeline_utils import AudioPipelineOutput
import librosa
import numpy as np
import streamlit as st
import time
import hashlib
import json
from typing import List, TypeVar, cast
from os.path import join, realpath
from os import makedirs
from platform import system
from dataclasses import dataclass
SAMPLE_RATE_DEFAULT = 16000
@dataclass(frozen=True)
class OutputAudioInfo:
model: str
positive_prompt: str
negative_prompt: str
seed: int
steps: int
guidance_scale: float
duration: float
index: int
tempo: float
note: str
TListItem = TypeVar("TListItem")
def move_to_top(items: List[TListItem], item: TListItem) -> None:
items.remove(item)
items.insert(0, item)
def get_available_devices() -> List[str]:
devices = [
"cpu",
"cuda",
"mps",
]
if torch.cuda.is_available():
move_to_top(devices, "cuda")
if torch.backends.mps.is_available() and system() == "Darwin":
move_to_top(devices, "mps")
return devices
@st.cache_resource
def load_pipeline(
model_repo: str,
device: str | None,
) -> AudioLDM2Pipeline:
pipe: AudioLDM2Pipeline = AudioLDM2Pipeline.from_pretrained(
pretrained_model_name_or_path=model_repo,
torch_dtype=torch.float32,
) # type: ignore
pipe: AudioLDM2Pipeline = pipe.to(device)
return pipe
def format_output_audio_file_name(info: OutputAudioInfo) -> str:
keyword = info.positive_prompt.split(",")[0]
keyword_clean = keyword.replace(" ", "-")
keyword_clean = keyword_clean.replace("_", "-")
keyword_clean = keyword_clean.lower()
file_name = keyword_clean
note = info.note
note_clean = note.replace("#", "sharp")
file_name += f"_{note_clean}"
file_name += f"-{round(info.tempo)}bpm"
file_name += f"-{info.steps}"
file_name += f"-{info.guidance_scale:.2f}"
file_name += f"-{info.duration:.2f}"
file_name += f"-{info.index}"
info_json = json.dumps(info.__dict__)
info_hash = hashlib.sha1(info_json.encode()).hexdigest()[:8]
file_name += f"-{info_hash}"
file_name += ".wav"
return file_name
title = "AudioLDM 2: Web UI"
st.set_page_config(
page_title=title,
)
st.title(title)
with st.container(border=True):
st.subheader(
body="Settings",
divider="orange",
)
model_repo = st.selectbox(
label="Model",
options=[
"cvssp/audioldm2",
"cvssp/audioldm2-large",
"cvssp/audioldm2-music",
],
key="model_repo",
)
devices = get_available_devices()
device_chosen = st.radio(
label="Device",
options=devices,
horizontal=True,
help="Please check either device type is supported on your machine.",
index=devices.index(devices[0]),
)
positive_prompt = st.text_area(
label="Positive Prompt",
)
negative_prompt = st.text_area(
label="Negative Prompt",
)
steps = st.number_input(
label="Steps",
format="%i",
value=200,
min_value=1,
)
guidance_scale = st.number_input(
label="Guidance Scale",
value=3.5,
min_value=0.0,
)
seed = st.number_input(
label="Seed",
format="%i",
value=0,
)
duration = st.number_input(
label="Duration (seconds)",
value=1.0,
min_value=0.04,
)
amount = st.number_input(
label="Audio clips amount",
format="%i",
value=1,
min_value=1,
)
button_generate = st.empty()
container_progress = st.empty()
container_output = st.empty()
if button_generate.button(
label="Generate",
type="primary",
use_container_width=True,
):
with container_progress.container(border=True):
st.subheader("Progress")
progress_steps = st.empty()
text_time_elapsed = st.empty()
def on_progress_steps(step: int, timestep: int, tensor: torch.FloatTensor | None):
steps_completed = step + 1
progress_steps.progress(
value=steps_completed / float(steps),
text=f"Steps completed: {steps_completed}/{steps}",
)
progress_steps.text("Initializing pipeline...")
pipe: AudioLDM2Pipeline = load_pipeline(cast(str, model_repo), device_chosen)
generator = torch.Generator(device_chosen).manual_seed(int(seed))
time_start = time.time()
pipe_output: AudioPipelineOutput = pipe(
prompt=positive_prompt,
negative_prompt=negative_prompt,
num_inference_steps=cast(int, steps),
guidance_scale=cast(float, guidance_scale),
audio_length_in_s=cast(float, duration),
num_waveforms_per_prompt=cast(int, amount),
generator=generator,
callback=on_progress_steps,
callback_steps=1,
) # type: ignore
time_end = time.time()
time_elapsed = time_end - time_start
text_time_elapsed.text("Completed.")
text_time_elapsed.text(f"Time elapsed: {time_elapsed:.2f} s.")
audios: np.ndarray = pipe_output.audios
with container_output.container(border=True):
st.subheader(
body="Generated Audio",
divider="orange"
)
index = 0
for audio in audios:
with st.container(border=True):
onset_envelope = librosa.onset.onset_strength(
y=audio,
sr=SAMPLE_RATE_DEFAULT,
hop_length=512,
)
tempo, _ = librosa.beat.beat_track(
onset_envelope=onset_envelope,
sr=SAMPLE_RATE_DEFAULT,
)
spectral_rolloff = librosa.feature.spectral_rolloff(
y=audio,
sr=SAMPLE_RATE_DEFAULT,
)
frequency_median = np.median(spectral_rolloff)
note_median = librosa.hz_to_note(frequency_median)
note_median = note_median.replace("\u266f", "#")
output_audio_info = OutputAudioInfo(
model=cast(str, model_repo),
positive_prompt=positive_prompt,
negative_prompt=negative_prompt,
seed=cast(int, seed),
steps=cast(int, steps),
guidance_scale=cast(float, guidance_scale),
duration=cast(float, duration),
index=index,
tempo=tempo,
note=note_median,
)
output_dir = "outputs"
makedirs(name=output_dir, exist_ok=True)
file_name = format_output_audio_file_name(output_audio_info)
output_path = realpath(
join(
output_dir,
file_name,
),
)
scipy.io.wavfile.write(
filename=output_path,
rate=SAMPLE_RATE_DEFAULT,
data=audio,
)
st.code(
body=output_path,
language="bash",
)
st.audio(output_path)
st.json(
body=output_audio_info.__dict__,
expanded=False,
)
index += 1