forked from sandialabs/MATLAB_PV_LIB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpvl_singleaxis.m
260 lines (236 loc) · 12.9 KB
/
pvl_singleaxis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
function [TrkrTheta, AOI, SurfTilt, SurfAz] = pvl_singleaxis(SunZen, SunAz, Latitude, AxisTilt, AxisAzimuth, MaxAngle, varargin)
% PVL_SINGLEAXIS Determine the rotation angle of a 1 axis tracker, and sun incident angle on the tracked surface
%
% Syntax
% [TrkrTheta, AOI, SurfTilt, SurfAz]= pvl_singleaxis(SunZen, SunAz, Latitude, AxisTilt, AxisAzimuth, MaxAngle)
% [TrkrTheta, AOI, SurfTilt, SurfAz]= pvl_singleaxis(SunZen, SunAz, Latitude, AxisTilt, AxisAzimuth, MaxAngle, Backtrack)
% [TrkrTheta, AOI, SurfTilt, SurfAz]= pvl_singleaxis(SunZen, SunAz, Latitude, AxisTilt, AxisAzimuth, MaxAngle, Backtrack, GCR)
%
% Description
% Determine the rotation angle of a single axis tracker using the
% equations in [1] when given a particular sun zenith and azimuth angle.
% Backtracking may be specified, and if so, a ground coverage ratio is
% required.
%
% Rotation angle is determined in a panel-oriented coordinate system.
% The tracker azimuth AxisAzimuth defines the positive y-axis; the positive
% x-axis is 90 degress clockwise from the y-axis and parallel to the
% earth surface, and the positive z-axis is normal and oriented towards the sun.
% Rotation angle TrkrTheta indicates tracker position relative to horizontal:
% TrkrTheta = 0 is horizontal, and positive TrkrTheta is a clockwise rotation
% around the y axis in the x, y, z coordinate system. For example, if tracker azimuth
% AxisAzimuth is 180 (oriented south), TrkrTheta = 30 is a rotation of
% 30 degrees towards the west, and TrkrTheta = -90 is a rotation to the
% vertical plane facing east.
%
% Inputs:
% SunZen - a scalar or vector of apparent (refraction-corrected) zenith
% angles in decimal degrees. If SunZen is a vector it must be of the
% same size as all other vector inputs. SunZen must be >=0 and <=180.
% SunAz - a scalar or vector of sun azimuth angles in decimal degrees.
% If SunAz is a vector it must be of the same size as all other vector
% inputs. SunAz must be >=0 and <=360. The Azimuth convention is defined
% as degrees East of North (e.g. North = 0, East = 90, West = 270).
% Latitude - a scalar value denoting which hempisphere the tracker is
% in. The exact latitude is NOT required, any positive number denotes
% the northern hemisphere, any negative number denotes the southern
% hemisphere, a value of 0 is assumed to be northern hemisphere.
% AxisTilt - a scalar value denoting the tilt of the axis of rotation
% (i.e, the y-axis defined by AxisAzimuth) with respect to horizontal,
% in decimal degrees. AxisTilt must be >=0 and <=180.
% AxisAzimuth - a scalar value denoting the compass direction along which
% the axis of rotation lies, in decimal degrees. Again, the convention
% is defined as degrees East of North (e.g. North = 0, East = 90,
% West = 270). AxisAzimuth must be >=0 and <=360.
% MaxAngle - a scalar value denoting the maximum rotation angle, in
% decimal degrees, of the one-axis tracker from its horizontal position
% (horizontal if AxisTilt = 0). MaxAngle must be <=180 and >=0. A
% MaxAngle of 90 degrees allows the tracker to rotate to a vertical
% position to point the panel towards a horizon.
% MaxAngle of 180 degrees allows for full rotation.
% Backtrack - a scalar value denoting whether the tracker has the
% capability to "backtrack" to avoid row-to-row shading. A value of 0
% denotes no backtrack capability. Any other value denotes backtrack
% capability. If Backtrack is not provided, the default value is 0 (no
% backtrack).
% GCR - a scalar value denoting the ground coverage ratio of a tracker
% system which utilizes backtracking; i.e. the ratio between the PV
% array surface area to total ground area. A tracker system with modules 2
% meters wide, centered on the tracking axis, with 6 meters between the
% tracking axes has a GCR of 2/6=0.333. If GCR is not provided, a GCR
% of 2/7 is default. GCR must be <=1.
%
% Output:
% TrkrTheta - The rotation angle (Theta) of the tracker.
% TrkrTheta = 0 is horizontal, and positive rotation angles are
% clockwise.
% AOI - The angle-of-incidence of direct irradiance onto the
% rotated panel surface.
% SurfTilt - The angle between the panel surface and the earth
% surface, accounting for panel rotation.
% SurfAz - The azimuth of the rotated panel, determined by
% projecting the vector normal to the panel's surface to the earth's
% surface.
%
% References:
% [1] Lorenzo, E et al., 2011, "Tracking and back-tracking", Prog. in
% Photovoltaics: Research and Applications, v. 19, pp. 747-753.
%
% See Also: PVL_EPHEMERIS PVL_SPA
%
%
p = inputParser;
p.addRequired('SunZen', @(x) all(isnumeric(x) & x>=0 & x<=180) & isvector(x));
p.addRequired('SunAz', @(x) all(isnumeric(x) & x>=0 & x<=360) & isvector(x));
p.addRequired('Latitude', @(x) (isnumeric(x) & isscalar(x)));
p.addRequired('AxisTilt', @(x) (isnumeric(x) & isscalar(x) & x>=0 & x<=90));
p.addRequired('AxisAzimuth', @(x) (isnumeric(x) & isscalar(x) & x>=0 & x<=360));
p.addRequired('MaxAngle', @(x) (isnumeric(x) & isscalar(x) & x<=180 & x>=0));
p.addOptional('BackTrack', 0, @(x) (isscalar(x)));
p.addOptional('GCR',1/3.5, @(x) (isnumeric(x) & isscalar(x) & x<=1));
p.parse(SunZen, SunAz, Latitude, AxisTilt, AxisAzimuth, MaxAngle, varargin{:})
if Latitude<0
msgbox('This code doesn''t work for the southern hemisphere');
return
end
BackTrack = p.Results.BackTrack;
GCR = p.Results.GCR;
SunZen = SunZen(:);
SunAz = SunAz(:);
% Calculate sun position x, y, z using coordinate system as in [1], Eq 2.
% Positive y axis is oriented parallel to earth surface along tracking axis
% (for the purpose of illustration, assume y is oriented to the south);
% positive x axis is orthogonal, 90 deg clockwise from y-axis, and parallel
% to the earth's surface (if y axis is south, x axis is west);
% positive z axis is normal to x,y axes, pointed upward.
% Equations in [1] assume solar azimuth is relative to reference vector
% pointed south, with clockwise positive. Here, the input solar azimuth
% is degrees East of North, i.e., relative to a reference vector pointed
% north with clockwise positive. Rotate sun azimuth to coordinate system as in [1]
% to calculate sun position.
Az = SunAz - 180;
El = 90-SunZen;
x = cosd(El).*sind(Az);
y = cosd(El).*cosd(Az);
z = sind(El);
% translate array azimuth from compass bearing to [1] coord system
AxisAz = AxisAzimuth - 180;
% translate input array tilt angle axistilt to [1] coordinate system. In
% [1] coordinates, axistilt is a rotation about the x-axis. For a system
% with array azimuth (y-axis) oriented south, the x-axis is oriented west,
% and a positive axistilt is a counterclockwise rotation, i.e, lifting the
% north edge of the panel. Thus, in [1] coordinate system, in the northern
% hemisphere a positive axistilt indicates a rotation toward the equator,
% whereas in the southern hemisphere rotation toward the equator is
% indicated by axistilt<0. Here, the input axistilt is always positive and
% is a rotation toward the equator.
% Calculate sun position (xp, yp, zp) in panel-oriented coordinate system:
% positive y-axis is oriented along tracking axis at panel tilt;
% positive x-axis is orthogonal, clockwise, parallel to earth surface;
% positive z-axis is normal to x-y axes, pointed upward.
% Calculate sun position (xp,yp,zp) in panel coordinates using [1] Eq 11
xp = x.*cosd(AxisAz) - y.*sind(AxisAz);
yp = x.*cosd(AxisTilt).*sind(AxisAz) + y.*cosd(AxisTilt).*cosd(AxisAz) - z.*sind(AxisTilt);
% note that equation for yp (y' in Eq. 11 of Lorenzo et al 2011) is
% corrected, after conversation with paper's authors
zp = x.*sind(AxisTilt).*sind(AxisAz) + y.*sind(AxisTilt).*cosd(AxisAz) + z.*cosd(AxisTilt);
% The ideal tracking angle wid is the rotation to place the sun position
% vector (xp, yp, zp) in the (y, z) plane; i.e., normal to the panel and
% containing the axis of rotation. wid = 0 indicates that the panel is
% horizontal. Here, our convention is that a clockwise rotation is
% positive, to view rotation angles in the same frame of reference as
% azimuth. For example, for a system with tracking axis oriented south,
% a rotation toward the east is negative, and a rotation to the west is
% positive.
% filter to avoid undefined inverse tangent
tmp(xp~=0) = atand(zp./xp); % angle from x-y plane to projection of sun vector onto x-z plane
tmp(xp==0 & zp>=0) = 90; % fill in when atan is undefined
tmp(xp==0 & zp<0) = -90; % fill in when atan is undefined
tmp=tmp(:); % ensure tmp is a column vector
% Obtain wid by translating tmp to convention for rotation angles.
% Have to account for which quadrant of the x-z plane in which the sun
% vector lies. Complete solution here but probably not necessary to
% consider QIII and QIV.
wid(xp>=0 & zp>=0) = 90 - tmp(xp>=0 & zp>=0); % QI
wid(xp<0 & zp>=0) = -90 - tmp(xp<0 & zp>=0); % QII
wid(xp<0 & zp<0) = -90 - tmp(xp<0 & zp<0); % QIII
wid(xp>=0 & zp<0) = 90 - tmp(xp>=0 & zp<0); % QIV
wid=wid(:); % ensure wid is a column vector
% filter for sun above panel horizon)
u = zp>0;
% apply limits to ideal rotation angle
wid(~u) = 0; % set horizontal if zenith<0, sun is below panel horizon
% Account for backtracking; modified from [1] to account for rotation
% angle convention being used here.
if (BackTrack ~= 0)
Lew = 1/GCR;
temp = min(Lew.*cosd(wid),1); % ensures argument of acos is <= 1
temp = max(temp, -1); % ensures argument of acos is >= -1
wc = acosd(temp); % backtrack angle; always positive (acosd returns values between 0 and 180)
v = wid<0;
widc(~v) = wid(~v) - wc(~v); % Eq 4 applied when wid in QI
widc(v) = wid(v) + wc(v); % Eq 4 applied when wid in QIV
else
widc = wid;
end
TrkrTheta(u) = widc(u);
TrkrTheta(~u) = 0; % set to zero when sun is below panel horizon
TrkrTheta = TrkrTheta(:); % ensure column vector format
TrkrTheta(TrkrTheta > MaxAngle) = MaxAngle;
TrkrTheta(TrkrTheta < -MaxAngle) = -MaxAngle;
% calculate normal vector to panel in panel-oriented x, y, z coordinates
% y-axis is axis of tracker rotation. TrkrTheta is a compass angle
% (clockwise is positive) rather than a trigonometric angle.
Norm = [sind(TrkrTheta) zeros(length(TrkrTheta),1) cosd(TrkrTheta)];
% sun position in vector format in panel-oriented x, y, z coordinates
P = [xp yp zp];
% calculate angle-of-incidence on panel
AOI = acosd(abs(dot(Norm,P,2)));
AOI(~u) = 0; % set to zero when sun is below panel horizon
% calculate panel elevation SurfEl and azimuth SurfAz in a coordinate system where the
% panel elevation is the angle from horizontal, and the panel azimuth is
% the compass angle (clockwise from north) to the projection of the panel's
% normal to the earth's surface. These outputs are provided for
% convenience and comparison with other PV software which use these angle
% conventions.
% project normal vector to earth surface. First rotate
% about x-axis by angle -AxisTilt so that y-axis is also parallel to earth
% surface, then project.
Rot_x = [1 0 0; 0 cosd(-AxisTilt) -sind(-AxisTilt); 0 sind(-AxisTilt) cosd(-AxisTilt)]; %rotation matrix
temp = Rot_x * Norm'; % temp contains the normal vector expressed in earth-surface coordinates (z normal to surface, y aligned with tracker axis parallel to earth)
temp = temp'; % ensure column format
projNorm = [temp(:,1) temp(:,2) zeros(size(temp(:,3)))]; % projection to plane tangent to earth surface, in earth surface coordinates
tempnorm = sqrt(sum(temp.^2,2));
projNormnorm = sqrt(sum(projNorm.^2,2));
SurfAz = 0.*TrkrTheta;
% calculation of SurfAz
SurfAz = atand(projNorm(:,2)./projNorm(:,1));
% clean up atan when x-coord is zero
SurfAz(projNorm(:,1)==0 & projNorm(:,2)>0) = 90;
SurfAz(projNorm(:,1)==0 & projNorm(:,2)<0) = -90;
% clean up atan when y-coord is zero
SurfAz(projNorm(:,2)==0 & projNorm(:,1)>0) = 0;
SurfAz(projNorm(:,2)==0 & projNorm(:,1)<0) = 180;
% correct for QII and QIII
SurfAz(projNorm(:,1)<0 & projNorm(:,2)>0) = SurfAz(projNorm(:,1)<0 & projNorm(:,2)>0) + 180; % QII
SurfAz(projNorm(:,1)<0 & projNorm(:,2)<0) = SurfAz(projNorm(:,1)<0 & projNorm(:,2)<0) + 180; % QIII
% at this point SurfAz contains angles between -90 and +270, where 0 is
% along the positive x-axis, the y-axis is in the direction of the tracker
% azimuth, and positive angles are rotations from the positive x axis towards
% the positive y-axis.
% Adjust to compass angles (clockwise rotation from 0 along the positive y-axis)
SurfAz(SurfAz<=90) = 90 - SurfAz(SurfAz<=90);
SurfAz(SurfAz>90) = 450 - SurfAz(SurfAz>90);
% finally rotate to align y-axis with true north
if Latitude>0
SurfAz = SurfAz - AxisAzimuth;
else
SurfAz = SurfAz - AxisAzimuth - 180;
end
SurfAz(SurfAz<0) = 360+ SurfAz(SurfAz<0);
divisor = (round(tempnorm.*projNormnorm.*10000))./10000;
dividend = (round(dot(temp,projNorm,2).*10000))./10000;
divisor(divisor<eps) = eps; %Added by D. Riley to avoid division by 0
SurfTilt = 90 - acosd(dividend./divisor);
SurfTilt = SurfTilt(:);
end