forked from sandialabs/MATLAB_PV_LIB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpvl_est_diode_params_simple.m
129 lines (105 loc) · 3.93 KB
/
pvl_est_diode_params_simple.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
function [IL, I0, Rsh, Rs] = pvl_est_diode_params_simple(IVCurve, nNsVth)
% PVL_EST_SINGLE_DIODE_PARAM_SIMPLE fits the single diode equation to data
% for a single IV curve.
%
% Syntax
% [IL, I0, Rsh, Rs] = pvl_est_single_diode_param_simple(IVCurve, nNsVth)
%
% Description
% pvl_est_single_diode_param_simple uses a sequential technique described
% in [1] to fit the single diode equation to data for a single IV curve.
% The method here is a simplification of that found in [2] and coded in
% est_single_diode_param. The diode factor n is not determined in this
% function. A value for n can be found by regression between Voc and
% log(Ee) for a range of effective irradiance Ee, as coded in e.g.
% pvl_desoto_parameter_estimation.
%
% Input:
% IVCurve - A structure with the following fields:
% IVCurve.Isc - short circuit current in amperes.
% IVCurve.Voc - open circuit voltage in volts.
% IVCurve.Imp - current at maximum power point in amperes.
% IVCurve.Vmp - voltage at maximum power point in volts.
% IVCurve.Pmp - power at maximum power point in watts.
% IVCurve.V - vector of voltage in volts.
% IVCurve.I - vector of current in amperes.
% nNsVth - the product n (diode factor) x Ns (cells in series)
% x Vth (thermal voltage per cell) for both IV curves.
%
% Output:
% IL - the light current (A) for the IV curve
% I0 - the dark current (A) for the IV curve
% Rsh - shunt resistance (ohm) for the IV curve
% Rs - series resistance (ohm) for the IV curve
%
% References
% [1] C. Hansen and B. King, "Determining series resistance for
% equivalent circuit models of a PV module", in 45th IEEE Photovoltaic
% Specialist Conference, Waikoloa, HI, 2018.
%
% [2] C. Hansen, Parameter Estimation for Single Diode Models of
% Photovoltaic Modules, Sandia National Laboratories Report SAND2015-2065
I = IVCurve.I(:);
V = IVCurve.V(:);
% rule of thumb for portion of IV curve I ~ IL + I0 - (V + I * Rs)/ Rsh
% where exponential term has small influence. Isc stands in here for IL.
Vlim = nNsVth*log(5*10^2) - IVCurve.Isc;
idx = find(V - Vlim > 0, 1);
tRsh = -1;
% a bit of protection against IV curves where measured current is slightly
% greater than Isc at some voltages
while tRsh<0 && idx<length(V)
X = V(1:idx);
Y = IVCurve.Isc - I(1:idx);
beta = [ones(size(X)) X]\Y;
tRsh = 1/beta(2);
idx = idx + 5;
end
% initial guess at IL
IL = IVCurve.Isc;
for k=1:5
% calculate I0
if IVCurve.Voc/nNsVth < (log(realmax)-3)
I0 = (IL - IVCurve.Voc/tRsh)/(exp(IVCurve.Voc/nNsVth) - 1);
else
logI0 = log(IL - Voc/tRsh) - IVCurve.Voc/nNsVth;
I0 = exp(logI0);
end
% using values for nNsVth, Rsh, IL and I0, calculate Rs at a point
% midway between Vmp and Voc
idx = find(V - (IVCurve.Voc + IVCurve.Vmp)/2 > 0, 1);
tV = V(idx);
tI = I(idx);
W = calc_phi_exact(tI, IL, I0, nNsVth, tRsh);
Rs = ((IL + I0 - tI)*tRsh - tV - nNsVth*W)/tI;
% update IL
IL = IVCurve.Isc*(1 + Rs/tRsh);
end
Rsh = tRsh;
end
function [W] = calc_phi_exact(I, IL, Io, a, Rsh)
% calculates W(phi) where phi is the argument of the
% Lambert W function in V = V(I) at I=Imp ([2], Eq. 3). Formula for
% phi is given in code below as argw.
% phi
argw = Rsh.*Io./a .*exp(Rsh.*(IL + Io - I)./a);
% Screen out any negative values for argw
u = argw>0;
W(~u)=NaN;
tmp = pvl_lambertw(argw(u));
ff = isnan(tmp);
% take care of any numerical overflow by evaluating log(W(phi))
if any(ff)
logargW = log(Rsh(u)) + log(Io(u)) - log(a(u)) + Rsh(u).*(IL(u) + Io(u) - I(u))./a(u);
% Three iterations of Newton-Raphson method to solve w+log(w)=logargW.
% The initial guess is w=logargW. Where direct evaluation (above) results
% in NaN from overflow, 3 iterations of Newton's method gives
% approximately 8 digits of precision.
x = logargW;
for i=1:5
x = x.*((1-log(x)+logargW)./(1+x));
end
tmp(ff) = x(ff);
end
W(u) = tmp;
end