forked from sandialabs/MATLAB_PV_LIB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpvl_Purdue_albedo_model.m
246 lines (187 loc) · 10.7 KB
/
pvl_Purdue_albedo_model.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
function [I_Alb] = pvl_Purdue_albedo_model(SurfTilt, SurfAz, EtoH, Albedo, ...
DHI, DNI, HExtra, SunZen, SunAz, AM, varargin)
% |pvl_Purdue_albedo_model| calculates the collection of ground-reflected
% albedo light on the rear surface of a PV module while fully accounting
% for self-shading.
%
% Syntax
% |pvl_Purdue_albedo_model(SurfTilt, SurfAz, EtoH, Albedo, DHI, DNI, HExtra, SunZen, SunAz, AM)|
% |pvl_Purdue_albedo_model(SurfTilt, SurfAz, EtoH, Albedo, DHI, DNI, HExtra, SunZen, SunAz, AM, model)|
%
% Description
% This code is part of the Purdue Bifacial irradiance model [1] and it can
% simulate the albedo light intensity on both the front and rear sides of a
% bifacial solar module. This model takes two types of self-shading losses into
% account: 1) direct blocking of direct beam and circumsolar light by the module onto the ground
% and 2) sky masking of isotropic diffuse light by the module. This model
% employs a view-factor based approach and the detailed methodology is discussed
% in [1].
%
% Inputs:
% |SurfTilt| - a scalar or vector of surface tilt angles in decimal degrees.
% If |SurfTilt| is a vector it must be of the same size as all other vector
% inputs. |SurfTilt| must be >=0 and <=180. The tilt angle is defined as
% degrees from horizontal (e.g. surface facing up = 0, surface facing
% horizon = 90).
% |SurfAz| - a scalar or vector of surface azimuth angles in decimal degrees.
% If |SurfAz| is a vector it must be of the same size as all other vector
% inputs. |SurfAz| must be >=0 and <=360. The Azimuth convention is defined
% as degrees east of north (e.g. North = 0, East = 90, West = 270).
% |EtoH| - a scalar or vector of the ratio of module elevation(E) to module height(H).
% Module height is the module dimension not parallel to the ground.
% If |EtoH| is a vector it must be of the same size as all other vector
% inputs. |EtoH| must be >=0.
% |Albedo| - a scalar or vector of groud albedo coefficient.
% If |Albedo| is a vector it must be of the same size as all other vector
% inputs. |Albedo| must be >=0 and <=1.
% |DHI| - a scalar or vector of diffuse horizontal irradiance in W/m^2.
% If |DHI| is a vector it must be of the same size as all other vector inputs.
% |DHI| must be >=0.
% |DNI| - a scalar or vector of direct normal irradiance in W/m^2. If
% |DNI| is a vector it must be of the same size as all other vector inputs.
% |DNI| must be >=0.
% |HExtra| - a scalar or vector of extraterrestrial normal irradiance in
% W/m^2. If |HExtra| is a vector it must be of the same size as
% all other vector inputs. |HExtra| must be >=0.
% |SunZen| - a scalar or vector of apparent (refraction-corrected) zenith
% angles in decimal degrees. If |SunZen| is a vector it must be of the
% same size as all other vector inputs. |SunZen| must be >=0 and <=180.
% |SunAz| - a scalar or vector of sun azimuth angles in decimal degrees.
% If |SunAz| is a vector it must be of the same size as all other vector
% inputs. |SunAz| must be >=0 and <=360. The Azimuth convention is defined
% as degrees east of north (e.g. North = 0, East = 90, West = 270).
% |AM| - a scalar or vector of relative (not pressure-corrected) airmass
% values. If |AM| is a vector it must be of the same size as all other
% vector inputs. |AM| must be >=0.
% |model| - a character string which selects the desired set of Perez
% coefficients. If model is not provided as an input, the default,
% '1990' will be used.
% All possible model selections are:
% '1990', 'allsitescomposite1990' (same as '1990'),
% 'allsitescomposite1988', 'sandiacomposite1988',
% 'usacomposite1988', 'france1988', 'phoenix1988',
% 'elmonte1988', 'osage1988', 'albuquerque1988',
% 'capecanaveral1988', or 'albany1988'
%
% Output:
% |I_Alb| - the total ground-reflected albedo irradiance incident to the specified surface.
% |I_Alb| is a column vector vector with a number of elements equal to the input vector(s).
%
% References
% [1] Sun, X., Khan, M. R., Alam, M. A., 2018. Optimization and performance
% of bifacial solar modules: A global perspective. Applied Energy 212, pp. 1601-1610.
% [2] Khan, M. R., Hanna, A., Sun, X., Alam, M. A., 2017. Vertical bifacial solar farms:
% Physics, design, and global optimization. Applied Energy, 206, 240–248.
% [3] Duffie, J. A., Beckman, W. A. 2013. Solar Engineering of Thermal Processes (4th Editio).
% Wiley.
%
% See also |pvl_perez|, |pvl_Purdue_Bifacial_irradiance|
%
% Notes: pvl_Purdue_albedo_model contributed by Xingshu Sun of Purdue
% University, 2018.
%% Process Inputs
%parse parameters
p=inputParser;
p.addRequired('SurfTilt', @(x) (isnumeric(x) && all(x<=180) && all(x>=0) && isvector(x)));
p.addRequired('SurfAz', @(x) isnumeric(x) && all(x<=360) && all(x>=0) && isvector(x));
p.addRequired('EtoH', @(x) isnumeric(x) && all(x>=0) && isvector(x));
p.addRequired('Albedo', @(x) isnumeric(x) && all(x<=1) && all(x>=0) && isvector(x));
p.addRequired('DHI', @(x) (isnumeric(x) && isvector(x) && all((x>=0) | isnan(x))));
p.addRequired('DNI', @(x) isnumeric(x) && isvector(x) && all((x>=0) | isnan(x)));
p.addRequired('HExtra', @(x) isnumeric(x) && isvector(x) && all((x>=0) | isnan(x)));
p.addRequired('SunZen', @(x) isnumeric(x) && all(x<=180) && all((x>=0) | isnan(x)) && isvector(x));
p.addRequired('SunAz', @(x) (isnumeric(x) && all(x<=360) && all((x>=0) | isnan(x)) && isvector(x)));
p.addRequired('AM', @(x) (all(((isnumeric(x) & x>=0) | isnan(x))) & isvector(x)));
p.addOptional('model', '1990', @(x) ischar(x));
p.parse(SurfTilt, SurfAz, EtoH, Albedo, DHI, DNI, HExtra, SunZen, SunAz, AM, varargin{:});
SurfTilt = p.Results.SurfTilt(:);
SurfAz = p.Results.SurfAz(:);
EtoH = p.Results.EtoH(:);
DHI = p.Results.DHI(:);
DNI = p.Results.DNI(:);
Albedo = p.Results.Albedo(:);
HExtra = p.Results.HExtra(:);
SunZen = p.Results.SunZen(:);
SunAz = p.Results.SunAz(:);
AM = p.Results.AM(:);
model = p.Results.model;
VectorSizes = [numel(SurfTilt), numel(SurfAz), numel(DHI), numel(DNI), ...
numel(HExtra), numel(SunZen), numel(SunAz), numel(AM)];
MaxVectorSize = max(VectorSizes);
if not(all((VectorSizes==MaxVectorSize) | (VectorSizes==1)))
error(['Input parameters SurfTilt, SurfAz, EtoH, DHI, DNI, Albedo, HExtra, SunZen, SunAz, AM'...
' must either be scalars or vectors of the same length.']);
end
%Calculate the diffuse light onto the ground by the Perez model
[~,I_Alb_Iso_G,I_Alb_Cir_G,~] = pvl_perez(0*ones(size(DHI)), 0*ones(size(DHI)), DHI, DNI, HExtra, SunZen, SunAz, AM ,model); %Perez Diffuse
%Calculate the albedo light from the ground-reflected istropic diffuse light (self-shading: sky masking)
I_Alb_Iso = I_Alb_Iso_G .* Albedo .* VF_Integral_Diffuse(SurfTilt,EtoH); %see equation 11 in [1]
%Calculate the albedo light from the ground-reflected circumsolar diffuse and direct beam light (self-shading: direct blocking)
[VF_Direct,ShadowL_Direct] = VF_Shadow(SurfAz,...
SurfTilt,SunAz,SunZen,EtoH); %Self-shading of direct beam light
CirZen = SunZen; CirZen(CirZen>85) = 85;
[VF_Circum,ShadowL_Circum] = VF_Shadow(SurfAz,...
SurfTilt,SunAz,CirZen,EtoH); %Self-shading of circumsolar diffuse light
I_Alb_Direct = Albedo .* ((1 - cosd(SurfTilt))/2 - VF_Direct .* ShadowL_Direct) .* DNI .* cosd(SunZen); %see equation 9 in [1]
I_Alb_Cir = Albedo .* ((1 - cosd(SurfTilt))/2 - VF_Circum .* ShadowL_Circum) .* I_Alb_Cir_G; %see equation 9 in [1]
%Sum up the total albedo light
I_Alb = I_Alb_Iso + I_Alb_Direct + I_Alb_Cir;
function [VF_Integral] = VF_Integral_Diffuse(SurfTilt,EtoW)
% This function is used to calculate the integral of view factors in eqn. 11 of Ref. [1]
VF_Integral = NaN(size(SurfTilt));
for i = 1:length(SurfTilt)
theta1 = @(x) (x<0).*(180-(acotd(-x./EtoW(i)))) + (x>=0).*(acotd(-x./EtoW(i))); %theta1 in Fig. 3 of Ref. [1]
theta2 = @(x) (x<cosd(180-SurfTilt(i))).*(acotd((cosd(180-SurfTilt(i))-x)./(EtoW(i)+sind(180-SurfTilt(i))))) + (x>=cosd(180-SurfTilt(i))).*(180-(acotd((x-cosd(180-SurfTilt(i)))./(EtoW(i)+sind(180-SurfTilt(i)))))); %theta2 in Fig. 3 of the Ref. [1]
integ_term = @(x) (1-(cosd(theta1(x))+cosd(theta2(x)))/2).* (cosd(theta1(x))+cosd(theta2(x)))./2; %define integral term
xmin = -EtoW(i)/tand(180-SurfTilt(i));%calculate xmin of the integral
VF_Integral(i,1) = integral(integ_term,xmin,inf); %perform integral
if SurfTilt(i) ==0
VF_Integral(i,1) = 0;
end
end
function [VF,ShadowL] = VF_Shadow(Panel_Azimuth,Panel_Tilt,AzimuthAngle_Sun,ZenithAngle_Sun,EtoW)
%This function is used to calculate the view factor from the shaded ground to the module and the shadow length in eqn. 9 of Ref. [1]
%Please refer to Refs. [2,3] for the analytical equations used here
Panel_Tilt = (180-Panel_Tilt); %limit to two parallel cases
Panel_Azimuth = Panel_Azimuth + 180; %consider the back of the module
Panel_Tilt(Panel_Tilt==0) = 1e-4; %parallel plate case
Panel_Azimuth(Panel_Azimuth>=360) = Panel_Azimuth(Panel_Azimuth>=360) - 360;
%%Calculate AOI
temp = cosd(ZenithAngle_Sun).*cosd(Panel_Tilt)+sind(Panel_Tilt).*sind(ZenithAngle_Sun).*cosd(AzimuthAngle_Sun-Panel_Azimuth);
temp(temp>1) = 1; temp(temp<-1) = -1;
AOI = acosd(temp);
AOI = AOI(:);
%%Calculate view factor
ShadowExtension = cosd(Panel_Azimuth-AzimuthAngle_Sun) .* sind(Panel_Tilt)./tand(90-ZenithAngle_Sun);
ShadowL = ShadowExtension + cosd(Panel_Tilt); %shadow length
ThetaZ = atand(tand(90-ZenithAngle_Sun)./cosd(Panel_Azimuth-AzimuthAngle_Sun));
H = EtoW./tand(ThetaZ) + EtoW./tand(Panel_Tilt);
P = EtoW./sind(Panel_Tilt);
VF = ViewFactor_Gap(1,ShadowL,P,H,Panel_Tilt);
VF(cosd(AOI) <= 0) = 0; %no shadow is cast
function [VF] = ViewFactor_Gap(b,a,P,H,alpha)
%calculate the view factor from a to b (infinite lines with alpha angle with distance to their cross point (b:P, a:H))
%first part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
VF1 = ViewFactor_Cross(b+P,H,alpha); %H to b+P
VF2 = ViewFactor_Cross(P,H,alpha); %H to P
VF3 = VF1 - VF2; %H to b
VF3 = VF3.*H ./b; %b to H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%second part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
VF1_2 = ViewFactor_Cross(b+P,a+H,alpha); %a+H to b+P
VF2_2 = ViewFactor_Cross(P,a+H,alpha); %a+H to P
VF3_2 = VF1_2 - VF2_2; %a+H to b
VF3_2 = VF3_2.*(a+H) ./b; %b to a+H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%third part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
VF3_3 = VF3_2 - VF3; %b to a
VF = VF3_3 .* b ./ a; %a to b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
VF(isnan(VF)) = 0; %if a = 0 or b =0
function [VF] = ViewFactor_Cross(b,a,alpha)
%calculate the view factor from a to b (infinite lines with alpha angle)
VF = 1/2 * (1 + b./a - sqrt(1-2*b./a.*cosd(alpha)+(b./a).^2));
VF(isnan(VF)) = 0; %if a = 0