forked from sandialabs/MATLAB_PV_LIB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpvl_FSspeccorr.m
171 lines (160 loc) · 7.63 KB
/
pvl_FSspeccorr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
function [M] = pvl_FSspeccorr(Pwat,AMa,varargin)
% pvl_FSspeccorr Spectral mismatch modifier based on precipitable water and
% absolute (pressure corrected) airmass.
%
% Syntax:
% [M] = pvl_FSspeccorr(Pwat, AMa, pvModType)
% [M] = pvl_FSspeccorr(Pwat, AMa, custCoeff)
%
% Description:
%
% Estimates a spectral mismatch modifier M representing the effect on
% module short circuit current of variation in the spectral irradiance.
% M is estimated from absolute (pressure currected) air mass, AMa, and
% precipitable water, Pwat, using the following function:
%
% M = coeff(1) + coeff(2)*AMa + coeff(3)*Pwat + coeff(4)*AMa.^.5
% + coeff(5)*Pwat.^.5 + coeff(6)*AMa./Pwat.^0.5 (1)
%
% Default coefficients are determined for several cell types with
% known quantum efficiency curves, by using the Simple Model of the
% Atmospheric Radiative Transfer of Sunshine (SMARTS) [1].
% Using SMARTS, spectrums are simulated with all combinations of AMa
% and Pwat where:
% * 0.1 cm <= Pwat <= 5 cm
% * 1.0 <= AMa <= 5
% * Spectral range is limited to that of CMP11 (280 nm to 2800 nm)
% * spectrum simulated on a plane normal to the sun
% * All other parameters fixed at G173 standard
% From these simulated spectra, M is calculated using the known quantum
% efficiency curves. Multiple linear regression is then applied to fit
% Eq. 1 to determine the coefficients for each module.
%
% Function pvl_FSspeccorr was developed by Mitchell Lee and Alex Panchula,
% at First Solar, 2015. Detailed description of the spectral correction
% can be found in [2]. Additional validation and testing of the model
% can be found in [3].
%
% Inputs:
% Pwat - atmospheric precipitable water (cm). Can be
% entered as a vector.
% AMa - absolute (pressure corrected) airmass, as a vector of the same
% length as Pwat
% pvModType - a string specifying a cell type. Can be lower or upper case
% letters. Admits values of 'cdte', 'monosi'='xsi', 'multisi'='polysi'.
% If provided, this input
% selects coefficients for the following default modules:
% 'cdte' - coefficients for First Solar Series 4-2 CdTe modules.
% 'monosi','xsi' - coefficients for First Solar TetraSun modules.
% 'multisi','polysi' - coefficients for multi-crystalline silicon
% modules. The module used to calculate the spectral
% correction coefficients corresponds to the Mult-crystalline
% silicon Manufacturer 2 Model C from [4].
% 'cigs' - coefficients for anonymous copper indium gallium selenide
% PV module. Lower and upper limits of QE are 350 nm and 1300 nm,
% respectively. Please note that the QE of CIGS modules
% can vary significantly depending on the PV manufacture and
% vintage. Spectral Response of module module used to derive
% CIGS coefficients can be found in [3].
% 'asi' - coefficients for anonymous amorphous silicon PV module.
% Lower and upper limits of QE are 280 nm and 800 nm,
% respectively. Please note that the QE of a-Si modules
% can vary significantly depending on the PV manufacture and
% vintage. Spectral Response of module module used to derive
% a-Si coefficients can be found in [3].
% custCoeff - allows for entry of user defined spectral correction
% coefficients. Coefficients must be entered as a numeric row or
% column vector of length 6. Derivation of coefficients requires use
% of SMARTS and PV module quantum efficiency curve. Useful for modeling
% PV module types which are not included as defaults, or to fine tune
% the spectral correction to a particular mono-Si, multi-Si, or CdTe
% PV module. Note that the parameters for modules with very
% similar QE should be similar, in most cases limiting the need for
% module specific coefficients.
%
%
% Output:
% M - spectral mismatch factor (unitless) which is can be multiplied
% with broadband irradiance reaching a module's cells to estimate
% effective irradiance, i.e., the irradiance that is converted
% to electrical current.
%
% References:
% [1] Gueymard, Christian. SMARTS2: a simple model of the atmospheric
% radiative transfer of sunshine: algorithms and performance
% assessment. Cocoa, FL: Florida Solar Energy Center, 1995.
% [2] Lee, Mitchell, and Panchula, Alex. "Spectral Correction for
% Photovoltaic Module Performance Based on Air Mass and Precipitable
% Water." IEEE Photovoltaic Specialists Conference, Portland, 2016
% [3] Schweiger, M. and Hermann, W, Influence of Spectral Effects on
% Energy Yield of Different PV Modules: Comparison of Pwat and
% MMF Approach, TUV Rheinland Energy GmbH report 21237296.003, January 2017
% [4] Marion, William F., et al. User's Manual for Data for Validating
% Models for PV Module Performance. National Renewable Energy Laboratory, 2014.
% http://www.nrel.gov/docs/fy14osti/61610.pdf
% Correct for AMa and Pwat having transposed dimensions
if isrow(AMa)
AMa = AMa';
end
if isrow(Pwat)
Pwat = Pwat';
end
% --- Screen Input Data ---
% *** Pwat ***
% Replace Pwat Values below 0.1 cm with 0.1 cm to prevent model from
% diverging
if min(Pwat) < 0.1
Pwat(Pwat < 0.1) = 0.1;
warning(['Exceptionally low Pwat values replaced with 0.1 cm to prevent',...
' model divergence']);
end
% Warn user about Pwat data that is exceptionally high
if max(Pwat) > 8
warning(['Exceptionally high Pwat values. Check input data:', ...
' model may diverge in this range']);
end
% *** AMa ***
% Replace Extremely High AM with AM 10 to prevent model divergence
% AM > 10 will only occur very close to sunset
if max(AMa) > 10
AMa(AMa > 10) = 10;
end
% Warn user about AMa data that is exceptionally low
if min(AMa) < 0.58
warning(['Exceptionally low air mass: ',...
'model not intended for extra-terrestrial use'])
% pvl_absoluteairmass(1,pvl_alt2pres(4340)) = 0.58
% Elevation of Mina Pirquita, Argentian = 4340 m. Highest elevation city
% with population over 50,000.
end
% If user input is a character array, use appropriate default coefficients.
if ischar(varargin{1})
modType = lower(varargin{1});
modType = regexprep(modType,'[^a-zA-Z]','');
switch modType
case 'cdte'
% Coefficients for First Solar Series 4-2 (and later) modules.
% For modeling the performance of earlier CdTe module series,
% use the coefficients that are commented out
% [0.79418,-0.049883,-0.013402,0.16766,0.083377,-0.0044007];
coeff = [0.86273, -0.038948, -0.012506, 0.098871, 0.084658, -0.0042948];
case {'monosi','xsi'}
% Coefficients for First Solar TetraSun Modules
coeff = [0.85914, -0.020880, -0.0058853, 0.12029, 0.026814, -0.0017810];
case {'polysi','multisi'}
% Coefficients for Multi-Si: Manufacturer 2 Model C
coeff = [0.84090, -0.027539, -0.0079224, 0.13570, 0.038024, -0.0021218];
case 'cigs'
coeff = [0.85252, -0.022314, -0.0047216, 0.13666, 0.013342, -0.0008945];
case 'asi'
coeff = [1.12094, -0.047620, -0.0083627, -0.10443, 0.098382,-0.0033818];
otherwise
error('Incorrect module type for use of default parameters')
end
% User input coefficients
else
coeff = varargin{1};
end
% Evaluate Spectral Shift
M = coeff(1) + coeff(2)*AMa + coeff(3)*Pwat + coeff(4)*AMa.^.5 + coeff(5)*Pwat.^.5 + coeff(6)*AMa./Pwat.^0.5;
end