-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
335 lines (280 loc) · 14.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pycocotools
import os
import time
from argparse import ArgumentParser
import torch
import numpy as np
from torch.optim.lr_scheduler import MultiStepLR
import torch.utils.data.distributed
from ssd.model import SSD300, ResNet, Loss
from ssd.utils import dboxes300_coco, Encoder
from ssd.logger import Logger, BenchLogger
from ssd.evaluate import evaluate
from ssd.train import train_loop, tencent_trick, load_checkpoint, benchmark_train_loop, benchmark_inference_loop
from ssd.data import get_train_loader, get_val_dataset, get_val_dataloader, get_coco_ground_truth
import matplotlib.pyplot as plt
import dllogger as DLLogger
# Apex imports
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install APEX from https://github.com/nvidia/apex")
def generate_mean_std(args):
mean_val = [0.485, 0.456, 0.406]
std_val = [0.229, 0.224, 0.225]
mean = torch.tensor(mean_val).cuda()
std = torch.tensor(std_val).cuda()
view = [1, len(mean_val), 1, 1]
mean = mean.view(*view)
std = std.view(*view)
return mean, std
def make_parser():
parser = ArgumentParser(description="Train Single Shot MultiBox Detector"
" on COCO")
parser.add_argument('--data', '-d', type=str, default='/coco', required=True,
help='path to test and training data files')
parser.add_argument('--epochs', '-e', type=int, default=65,
help='number of epochs for training')
parser.add_argument('--batch-size', '--bs', type=int, default=32,
help='number of examples for each iteration')
parser.add_argument('--eval-batch-size', '--ebs', type=int, default=32,
help='number of examples for each evaluation iteration')
parser.add_argument('--no-cuda', action='store_true',
help='use available GPUs')
parser.add_argument('--seed', '-s', type=int,
help='manually set random seed for torch')
parser.add_argument('--checkpoint', type=str, default=None,
help='path to model checkpoint file')
parser.add_argument('--save', type=str, default=None,
help='save model checkpoints in the specified directory')
parser.add_argument('--mode', type=str, default='training',
choices=['training', 'evaluation', 'benchmark-training', 'benchmark-inference'])
parser.add_argument('--evaluation', nargs='*', type=int, default=[21, 31, 37, 42, 48, 53, 59, 64],
help='epochs at which to evaluate')
parser.add_argument('--multistep', nargs='*', type=int, default=[43, 54],
help='epochs at which to decay learning rate')
# Custom: Setup model
parser.add_argument('--nb-classes', '--nbc', type=int, default=4,
help='Nb of classes of model. Note: don\'t forget the default(?) background class...')
parser.add_argument('--larger-features', '--lf', action='store_true',
help='Use a larger feature map (36 -> 75)')
parser.add_argument('--scales', nargs='*', type=int, default=[21, 45, 99, 153, 207, 261, 315],
help='nb of pixels to use of 300x300 image for dbox')
parser.add_argument('--aspect-ratio-0', '--ar0', nargs='*', type=int, default=[2],
help='aspect ratios to consider at layer 0 (f.e. [2] --> 2, 1/2 or [2, 3] --> 1/2, 2, 3, 1/3),'
' square aspect ratio is always included.')
parser.add_argument('--aspect-ratio-1', '--ar1', nargs='*', type=int, default=[2, 3],
help='aspect ratios to consider at layer 1 (f.e. [2] --> 2, 1/2 or [2, 3] --> 1/2, 2, 3, 1/3),'
' square aspect ratio is always included.')
parser.add_argument('--aspect-ratio-2', '--ar2', nargs='*', type=int, default=[2, 3],
help='aspect ratios to consider at layer 2 (f.e. [2] --> 2, 1/2 or [2, 3] --> 1/2, 2, 3, 1/3),'
' square aspect ratio is always included.')
parser.add_argument('--aspect-ratio-3', '--ar3', nargs='*', type=int, default=[2, 3],
help='aspect ratios to consider at layer 3 (f.e. [2] --> 2, 1/2 or [2, 3] --> 1/2, 2, 3, 1/3),'
' square aspect ratio is always included.')
parser.add_argument('--aspect-ratio-4', '--ar4', nargs='*', type=int, default=[2],
help='aspect ratios to consider at layer 4 (f.e. [2] --> 2, 1/2 or [2, 3] --> 1/2, 2, 3, 1/3),'
' square aspect ratio is always included.')
parser.add_argument('--aspect-ratio-5', '--ar5', nargs='*', type=int, default=[2],
help='aspect ratios to consider at layer 5 (f.e. [2] --> 2, 1/2 or [2, 3] --> 1/2, 2, 3, 1/3),'
' square aspect ratio is always included.')
# Hyperparameters
parser.add_argument('--learning-rate', '--lr', type=float, default=2.6e-3,
help='learning rate')
parser.add_argument('--momentum', '-m', type=float, default=0.9,
help='momentum argument for SGD optimizer')
parser.add_argument('--weight-decay', '--wd', type=float, default=0.0005,
help='momentum argument for SGD optimizer')
parser.add_argument('--warmup', type=int, default=None)
parser.add_argument('--benchmark-iterations', type=int, default=20, metavar='N',
help='Run N iterations while benchmarking (ignored when training and validation)')
parser.add_argument('--benchmark-warmup', type=int, default=20, metavar='N',
help='Number of warmup iterations for benchmarking')
parser.add_argument('--backbone', type=str, default='resnet50',
choices=['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'])
parser.add_argument('--backbone-path', type=str, default=None,
help='Path to chekcpointed backbone. It should match the'
' backbone model declared with the --backbone argument.'
' When it is not provided, pretrained model from torchvision'
' will be downloaded.')
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--amp', action='store_true',
help='Whether to enable AMP ops. When false, uses TF32 on A100 and FP32 on V100 GPUS.')
parser.add_argument('--log-interval', type=int, default=9999999,
help='Logging interval. Changed default from 20 to 9999999 to prevent default loss log.')
parser.add_argument('--json-summary', type=str, default=None,
help='If provided, the json summary will be written to'
'the specified file.')
# Distributed
parser.add_argument('--local_rank', default=os.getenv('LOCAL_RANK',0), type=int,
help='Used for multi-process training. Can either be manually set ' +
'or automatically set by using \'python -m multiproc\'.')
return parser
def train(train_loop_func, logger, args):
losses_tr = []
losses_val = []
# Check that GPUs are actually available
use_cuda = not args.no_cuda
# Setup multi-GPU if necessary
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
args.N_gpu = torch.distributed.get_world_size()
else:
args.N_gpu = 1
if args.seed is None:
args.seed = np.random.randint(1e4)
if args.distributed:
args.seed = (args.seed + torch.distributed.get_rank()) % 2**32
print("Using seed = {}".format(args.seed))
torch.manual_seed(args.seed)
np.random.seed(seed=args.seed)
# Setup data, defaults
dboxes = dboxes300_coco(args)
encoder = Encoder(dboxes)
cocoGt = get_coco_ground_truth(args)
train_loader = get_train_loader(args, args.seed - 2**31)
val_dataset = get_val_dataset(args)
val_dataloader = get_val_dataloader(val_dataset, args)
ssd300 = SSD300(args, backbone=ResNet(args, args.backbone, args.backbone_path))
args.learning_rate = args.learning_rate * args.N_gpu * (args.batch_size / 32)
start_epoch = 0
iteration = 0
loss_func = Loss(dboxes)
if use_cuda:
ssd300.cuda()
loss_func.cuda()
optimizer = torch.optim.SGD(tencent_trick(ssd300), lr=args.learning_rate,
momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = MultiStepLR(optimizer=optimizer, milestones=args.multistep, gamma=0.1)
if args.distributed:
ssd300 = DDP(ssd300)
if args.checkpoint is not None:
if os.path.isfile(args.checkpoint):
load_checkpoint(ssd300.module if args.distributed else ssd300, args.checkpoint)
checkpoint = torch.load(args.checkpoint,
map_location=lambda storage, loc: storage.cuda(torch.cuda.current_device()))
start_epoch = checkpoint['epoch']
iteration = checkpoint['iteration']
scheduler.load_state_dict(checkpoint['scheduler'])
optimizer.load_state_dict(checkpoint['optimizer'])
else:
print('Provided checkpoint is not path to a file')
return
inv_map = {v: k for k, v in val_dataset.label_map.items()}
total_time = 0
if args.mode == 'evaluation':
acc = evaluate(0, ssd300, None, val_dataloader, cocoGt, encoder, inv_map, args)
if args.local_rank == 0:
print('Model precision {} mAP'.format(acc))
return
scaler = torch.cuda.amp.GradScaler(enabled=args.amp)
mean, std = generate_mean_std(args)
for epoch in range(start_epoch, args.epochs):
print(f'Starting epoch {epoch + 1}.')
start_epoch_time = time.time()
iteration = train_loop_func(ssd300, loss_func, scaler,
epoch, optimizer, train_loader, val_dataloader, encoder, iteration,
logger, args, mean, std)
if iteration is not None and len(iteration) == 2:
iteration, loss_av_tr = iteration
losses_tr.append(loss_av_tr)
if args.mode in ["training", "benchmark-training"]:
scheduler.step()
end_epoch_time = time.time() - start_epoch_time
total_time += end_epoch_time
if args.local_rank == 0:
logger.update_epoch_time(epoch, end_epoch_time)
acc, loss_av_val = evaluate(epoch, ssd300, loss_func, val_dataloader, cocoGt, encoder, inv_map, args)
losses_val.append(loss_av_val)
if epoch in args.evaluation and args.local_rank == 0:
logger.update_epoch(epoch, acc)
if args.save and args.local_rank == 0:
print("saving model...")
obj = {'epoch': epoch + 1,
'iteration': iteration,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'label_map': val_dataset.label_info}
if args.distributed:
obj['model'] = ssd300.module.state_dict()
else:
obj['model'] = ssd300.state_dict()
save_path = os.path.join(args.save, f'epoch_{epoch}.pt')
torch.save(obj, save_path)
logger.log('model path', save_path)
train_loader.reset()
print('')
DLLogger.log((), { 'total time': total_time })
print(f'Average time: {total_time/args.epochs}')
logger.log_summary()
if args.mode == 'training':
x = list(range(1, args.epochs + 1))
plt.semilogy(x, losses_tr, linewidth=2.0, label="training loss")
plt.semilogy(x, losses_val, linewidth=2.0, label="validation loss")
plt.legend()
plt.savefig('losses.png')
print('losses stored')
def log_params(logger, args):
logger.log_params({
"dataset path": args.data,
"epochs": args.epochs,
"batch size": args.batch_size,
"eval batch size": args.eval_batch_size,
"no cuda": args.no_cuda,
"seed": args.seed,
"checkpoint path": args.checkpoint,
"mode": args.mode,
"eval on epochs": args.evaluation,
"lr decay epochs": args.multistep,
"learning rate": args.learning_rate,
"momentum": args.momentum,
"weight decay": args.weight_decay,
"lr warmup": args.warmup,
"backbone": args.backbone,
"backbone path": args.backbone_path,
"num workers": args.num_workers,
"AMP": args.amp,
"precision": 'amp' if args.amp else 'fp32',
})
if __name__ == "__main__":
parser = make_parser()
args = parser.parse_args()
args.local_rank = int(os.environ.get('LOCAL_RANK', args.local_rank))
if args.local_rank == 0:
os.makedirs('./models', exist_ok=True)
torch.backends.cudnn.benchmark = True
# write json only on the main thread
args.json_summary = args.json_summary if args.local_rank == 0 else None
if args.mode == 'benchmark-training':
train_loop_func = benchmark_train_loop
logger = BenchLogger('Training benchmark', log_interval=args.log_interval,
json_output=args.json_summary)
args.epochs = 1
elif args.mode == 'benchmark-inference':
train_loop_func = benchmark_inference_loop
logger = BenchLogger('Inference benchmark', log_interval=args.log_interval,
json_output=args.json_summary)
args.epochs = 1
else:
train_loop_func = train_loop
logger = Logger('Training logger', log_interval=args.log_interval,
json_output=args.json_summary)
log_params(logger, args)
train(train_loop_func, logger, args)