forked from automl/learna
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMakefile
429 lines (385 loc) · 12.1 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
.DEFAULT_GOAL := show-help
SHELL := /bin/bash
PATH := $(PWD)/thirdparty/miniconda/miniconda/bin:$(PATH)
################################################################################
# Utility
################################################################################
## Run the testsuite
test:
@source activate learna && \
pytest . -p no:warnings
## To clean project state
clean: clean-runtime clean-data clean-thirdparty clean-models clean-results
## Remove runtime files
clean-runtime:
find . -name '*.pyc' -exec rm --force {} +
find . -name '__pycache__' -exec rm -rf --force {} +
## Remove data files
clean-data:
rm -rf data/eterna/*.rna
rm -rf data/eterna/raw/*.txt
rm -rf data/eterna/interim/*.txt
rm -rf data/rfam_taneda
rm -rf data/rfam_learn
## Remove model examples
clean-models:
rm -rf models/example
## Clean results directory
clean-results: clean-bohb clean-timed-execution
rm -rf results
## Remove all files from timed execution examples
clean-timed-execution:
rm -rf results/timed_execution_example
## Remove all bohb-examples
clean-bohb:
rm -rf results/*.pkl
rm -rf results/*.json
## Remove thirdparty installs
clean-thirdparty:
rm -rf thirdparty/miniconda/miniconda
################################################################################
# Setup General
################################################################################
## Download and prepare all datasets
data: data-eterna data-rfam-taneda data-rfam-learn
## Download and make the Eterna100 dataset
data-eterna:
@source activate learna && \
python -m src.data.download_and_build_eterna
./src/data/secondaries_to_single_files.sh data/eterna data/eterna/interim/eterna.txt
## Download and build the Rfam-Taneda dataset
data-rfam-taneda:
@./src/data/download_and_build_rfam_taneda.sh
## Download and build the Rfam-Learn dataset
data-rfam-learn:
@./src/data/download_and_build_rfam_learn.sh
################################################################################
# Setup LEARNA
################################################################################
## Install all dependencies
requirements:
./thirdparty/miniconda/make_miniconda.sh
conda env create -f environment.yml
################################################################################
# Test Experiment and Example
################################################################################
## Local experiment testing
experiment-test:
@source activate learna && \
python -m src.learna.design_rna \
--batch_size 79 \
--conv_channels 10 3 \
--embedding_size 0 \
--entropy_regularization 0.0001628733797899296 \
--fc_units 32 \
--learning_rate 0.00033766914645516697 \
--lstm_units 7 \
--num_fc_layers 1 \
--num_lstm_layers 2 \
--optimization_steps 10 \
--reward_exponent 9.437605850994773 \
--mutation_threshold 5 \
--include_mutation \
--conv_sizes 0 3 \
--restart_timeout 1800 \
--state_radius 2 \
--likelihood_ratio_clipping 0.3 \
--fc_activation relu \
--target_structure_path data/eterna/2.rna \
--timeout 30
## Example call for timed execution
timed-execution-example-%:
@source activate learna && \
python utils/timed_execution.py \
--timeout 30 \
--data_dir data/ \
--results_dir results/ \
--experiment_group timed_execution_example \
--method LEARNA-30min \
--dataset eterna \
--task_id $*
################################################################################
# Reproduce Results of LEARNA
################################################################################
## Reproduce LEARNA-30min on <id> (1-100) of Eterna100
reproduce-LEARNA-Eterna-%:
@source activate learna && \
python -m src.learna.design_rna \
--batch_size 79 \
--conv_channels 10 3 \
--embedding_size 0 \
--entropy_regularization 0.0001628733797899296 \
--fc_units 32 \
--learning_rate 0.00033766914645516697 \
--lstm_units 7 \
--num_fc_layers 1 \
--num_lstm_layers 2 \
--optimization_steps 10 \
--reward_exponent 9.437605850994773 \
--mutation_threshold 5 \
--include_mutation \
--conv_sizes 0 3 \
--restart_timeout 1800 \
--state_radius 2 \
--likelihood_ratio_clipping 0.3 \
--fc_activation relu \
--target_structure_path data/eterna/$*.rna \
--timeout 86400
## Reproduce LEARNA-10min on <id> (1-29) of Rfam-Taneda
reproduce-LEARNA-Rfam-Taneda-%:
@source activate learna && \
python -m src.learna.design_rna \
--batch_size 32 \
--conv_channels 8 1 \
--embedding_size 0 \
--entropy_regularization 0.00044440579487984737 \
--fc_units 52 \
--learning_rate 0.000548959271057026 \
--lstm_units 4 \
--num_fc_layers 1 \
--num_lstm_layers 2 \
--optimization_steps 10 \
--reward_exponent 5.724874982958563 \
--mutation_threshold 5 \
--conv_sizes 5 3 \
--state_radius 16 \
--likelihood_ratio_clipping 0.3 \
--include_mutation \
--fc_activation relu \
--target_structure_path data/rfam_taneda/$*.rna \
--timeout 600
## Reproduce LEARNA-30min on <id> (1-100) of Rfam-Learn-Test
reproduce-LEARNA-Rfam-Learn-Test-%:
@source activate learna && \
python -m src.learna.design_rna \
--batch_size 79 \
--conv_channels 10 3 \
--embedding_size 0 \
--entropy_regularization 0.0001628733797899296 \
--fc_units 32 \
--learning_rate 0.00033766914645516697 \
--lstm_units 7 \
--num_fc_layers 1 \
--num_lstm_layers 2 \
--optimization_steps 10 \
--reward_exponent 9.437605850994773 \
--mutation_threshold 5 \
--include_mutation \
--conv_sizes 0 3 \
--restart_timeout 1800 \
--state_radius 2 \
--likelihood_ratio_clipping 0.3 \
--fc_activation relu \
--target_structure_path data/rfam_learn/test/$*.rna \
--timeout 3600
################################################################################
# Reproduce Results of Meta-LEARNA
################################################################################
## Reproduce Meta-LEARNA on <id> (1-100) of Eterna100
reproduce-Meta-LEARNA-Eterna-%:
@source activate learna && \
python -m src.learna.design_rna \
--batch_size 80 \
--conv_channels 32 14 \
--embedding_size 1 \
--entropy_regularization 0.000198389753598839 \
--fc_units 9 \
--learning_rate 6.374026866356635e-05 \
--lstm_units 53 \
--num_fc_layers 1 \
--num_lstm_layers 0 \
--optimization_steps 10 \
--reward_exponent 9.224721807238447 \
--mutation_threshold 5 \
--include_mutation \
--conv_size 5 7 \
--state_radius 26 \
--likelihood_ratio_clipping 0.3 \
--fc_activation relu \
--target_structure_path data/eterna/$*.rna \
--restore_path models/trained_models/54_0_2 \
--timeout 86400 \
--stop_learning
## Reproduce Meta-LEARNA on <id> (1-29) of Rfam-Taneda
reproduce-Meta-LEARNA-Rfam-Taneda-%:
@source activate learna && \
python -m src.learna.design_rna \
--batch_size 80 \
--conv_channels 32 14 \
--embedding_size 1 \
--entropy_regularization 0.000198389753598839 \
--fc_units 9 \
--learning_rate 6.374026866356635e-05 \
--lstm_units 53 \
--num_fc_layers 1 \
--num_lstm_layers 0 \
--optimization_steps 10 \
--reward_exponent 9.224721807238447 \
--mutation_threshold 5 \
--include_mutation \
--conv_size 5 7 \
--state_radius 26 \
--likelihood_ratio_clipping 0.3 \
--fc_activation relu \
--target_structure_path data/rfam_taneda/$*.rna \
--restore_path models/trained_models/54_0_2 \
--timeout 600 \
--stop_learning
## Reproduce Meta-LEARNA on <id> (1-100) of Rfam-Learn-Test
reproduce-Meta-LEARNA-Rfam-Learn-Test-%:
@source activate learna && \
python -m src.learna.design_rna \
--batch_size 80 \
--conv_channels 32 14 \
--embedding_size 1 \
--entropy_regularization 0.000198389753598839 \
--fc_units 9 \
--learning_rate 6.374026866356635e-05 \
--lstm_units 53 \
--num_fc_layers 1 \
--num_lstm_layers 0 \
--optimization_steps 10 \
--reward_exponent 9.224721807238447 \
--mutation_threshold 5 \
--include_mutation \
--conv_size 5 7 \
--state_radius 26 \
--likelihood_ratio_clipping 0.3 \
--fc_activation relu \
--target_structure_path data/rfam_learn/test/$*.rna \
--restore_path models/trained_models/54_0_2 \
--timeout 3600 \
--stop_learning
################################################################################
# Reproduce Results of Meta-LEARNA-Adapt
################################################################################
## Reproduce Meta-LEARNA-Adapt on <id> (1-100) of Eterna100
reproduce-Meta-LEARNA-Adapt-Eterna-%:
@source activate learna && \
python -m src.learna.design_rna \
--batch_size 80 \
--conv_channels 32 14 \
--embedding_size 1 \
--entropy_regularization 0.000198389753598839 \
--fc_units 9 \
--learning_rate 6.374026866356635e-05 \
--lstm_units 53 \
--num_fc_layers 1 \
--num_lstm_layers 0 \
--optimization_steps 10 \
--reward_exponent 9.224721807238447 \
--mutation_threshold 5 \
--include_mutation \
--conv_size 5 7 \
--state_radius 26 \
--likelihood_ratio_clipping 0.3 \
--fc_activation relu \
--target_structure_path data/eterna/$*.rna \
--restore_path models/trained_models/54_0_2 \
--timeout 86400
## Reproduce Meta-LEARNA-Adapt on <id> (1-29) of Rfam-Taneda
reproduce-Meta-LEARNA-Adapt-Rfam-Taneda-%:
@source activate learna && \
python -m src.learna.design_rna \
--batch_size 80 \
--conv_channels 32 14 \
--embedding_size 1 \
--entropy_regularization 0.000198389753598839 \
--fc_units 9 \
--learning_rate 6.374026866356635e-05 \
--lstm_units 53 \
--num_fc_layers 1 \
--num_lstm_layers 0 \
--optimization_steps 10 \
--reward_exponent 9.224721807238447 \
--mutation_threshold 5 \
--include_mutation \
--conv_size 5 7 \
--state_radius 26 \
--likelihood_ratio_clipping 0.3 \
--fc_activation relu \
--target_structure_path data/rfam_taneda/$*.rna \
--restore_path models/trained_models/54_0_2 \
--timeout 600
## Reproduce Meta-LEARNA-Adapt on <id> (1-100) of Rfam-Learn-Test
reproduce-Meta-LEARNA-Adapt-Rfam-Learn-Test-%:
@source activate learna && \
python -m src.learna.design_rna \
--batch_size 80 \
--conv_channels 32 14 \
--embedding_size 1 \
--entropy_regularization 0.000198389753598839 \
--fc_units 9 \
--learning_rate 6.374026866356635e-05 \
--lstm_units 53 \
--num_fc_layers 1 \
--num_lstm_layers 0 \
--optimization_steps 10 \
--reward_exponent 9.224721807238447 \
--mutation_threshold 5 \
--include_mutation \
--conv_size 5 7 \
--state_radius 26 \
--likelihood_ratio_clipping 0.3 \
--fc_activation relu \
--target_structure_path data/rfam_learn/test/$*.rna \
--restore_path models/trained_models/54_0_2 \
--timeout 3600
################################################################################
# Joint Architecture and Hyperparameter Search
################################################################################
## Run an example for joint Hyperparameter and Architecture Search using BOHB
bohb-example:
@source activate learna && \
python -m src.optimization.bohb \
--min_budget 2 \
--max_budget 8 \
--n_iter 1 \
--n_cores 1 \
--run_id example \
--data_dir data \
--nic_name lo \
--shared_directory results/ \
--mode DesignRNA-rfam
################################################################################
# Help
################################################################################
# From https://drivendata.github.io/cookiecutter-data-science/
show-help:
@echo "$$(tput bold)Available rules:$$(tput sgr0)"
@echo
@sed -n -e "/^## / { \
h; \
s/.*//; \
:doc" \
-e "H; \
n; \
s/^## //; \
t doc" \
-e "s/:.*//; \
G; \
s/\\n## /---/; \
s/\\n/ /g; \
p; \
}" ${MAKEFILE_LIST} \
| LC_ALL='C' sort --ignore-case \
| awk -F '---' \
-v ncol=$$(tput cols) \
-v indent=22 \
-v col_on="$$(tput setaf 6)" \
-v col_off="$$(tput sgr0)" \
'{ \
printf "%s%*s%s ", col_on, -indent, $$1, col_off; \
n = split($$2, words, " "); \
line_length = ncol - indent; \
for (i = 1; i <= n; i++) { \
line_length -= length(words[i]) + 1; \
if (line_length <= 0) { \
line_length = ncol - indent - length(words[i]) - 1; \
printf "\n%*s ", -indent, " "; \
} \
printf "%s ", words[i]; \
} \
printf "\n"; \
}' \
| more $(shell test $(shell uname) = Darwin && echo '--no-init --raw-control-chars')