-
Notifications
You must be signed in to change notification settings - Fork 1
/
plot_chromosome.py
427 lines (355 loc) · 13.3 KB
/
plot_chromosome.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""Plotting script for chromosome data."""
from __future__ import annotations
import argparse
import json
import logging.config
import os
from dataclasses import asdict
import pandas as pd
import yaml
from functions.ChromosomePlotter import ChromosomePlotter
# Importing custom functions:
from functions.ColorFunctions import ColorPicker
from functions.ConfigManager import Config
from functions.CytobandAnnotator import CytobandAnnotator, get_centromere_position
from functions.DataIntegrator import DataIntegrator
from functions.GeneAnnotator import GeneAnnotator
from functions.GwasAnnotator import gwas_annotator
from functions.svg_handler import svg_handler
def genes_annotation_wrapper(
config_manager: Config, chromosome: str, height: int, gene_filename: str
) -> GeneAnnotator:
"""Wrapper function to generate gene annotation.
Args:
config_manager (Config): Configuration manager object.
chromosome (str): Chromosome to process.
height (int): Height of the plot.
gene_filename (str): File containing gene annotations.
Returns:
GeneAnnotator: Gene annotator object.
"""
# Extractig config values:
pixel = config_manager.plot_parameters.pixel_size
chunk_size = config_manager.basic_parameters.chunk_size
width = config_manager.plot_parameters.width
centromere_position = get_centromere_position(
config_manager.get_cytoband_file(), chromosome
)
# gene_file, centromerePosition, chromosome, chunk_size, pixel, height, width
gene_annotator_object = GeneAnnotator(
gene_filename, centromere_position, chromosome, chunk_size, pixel, height, width
)
return gene_annotator_object
def cytoband_annotation_wrapper(
config_manager: Config, chromosome: str
) -> CytobandAnnotator:
"""Wrapper function to generate cytoband annotation.
Args:
config_manager (Config): Configuration manager object.
chromosome (str): Chromosome to process.
Returns:
CytobandAnnotator: Cytoband annotator object.
"""
# Extract config values:
color_scheme = asdict(config_manager.color_schema)
pixel = config_manager.plot_parameters.pixel_size
chunk_size = config_manager.basic_parameters.chunk_size
width = config_manager.plot_parameters.width
cytoband_file = config_manager.get_cytoband_file()
logger.info(f"Generating cytological band from file: {cytoband_file}.")
# pixel, chromosome, bandFile, chunkSize, width, cytbandColors
cytoband_annot = CytobandAnnotator(
pixel,
chromosome,
cytoband_file,
chunk_size,
width,
color_scheme["cytoband_colors"],
)
cytoband_annot.generate_bands()
return cytoband_annot
def gwas_annotation_wrapper(config_manager: Config, chromosome: str) -> gwas_annotator:
# Extract config values:
color_scheme = asdict(config_manager.color_schema)
gwas_color = color_scheme["gwas_point"]
pixel = config_manager.plot_parameters.pixel_size
chunk_size = config_manager.basic_parameters.chunk_size
width = config_manager.plot_parameters.width
gwas_file = config_manager.get_gwas_file()
logger.info(f"Generating GWAS annotation from file: {gwas_file}.")
gwasAnnot = gwas_annotator(
chromosome=chromosome,
gwas_color=gwas_color,
pixel=pixel,
chunk_size=chunk_size,
gwas_file=gwas_file,
width=width,
)
return gwasAnnot.generate_gwas()
def integrator_wrapper(
config_manager: Config, dummy: bool, chromosome: str
) -> pd.DataFrame:
"""Integrate input data.
Args:
config_manager (Config): Configuration object.
dummy (bool): Flag to indicate if dummy data should be generated.
chromosome (str): Chromosome to process.
Returns:
pd.DataFrame: Integrated data.
"""
# Extracting parameters from config:
cytoband_file = config_manager.get_cytoband_file()
chromosome_file = config_manager.get_chromosome_file(chromosome)
gencode_file = config_manager.get_gencode_file()
dark_start = config_manager.plot_parameters.dark_start
dark_max = config_manager.plot_parameters.dark_max
color_map = config_manager.color_schema.chromosome_colors
width = config_manager.plot_parameters.width
# Initialize color picker object:
color_picker = ColorPicker(
color_map, width=width, dark_threshold=dark_start, dark_max=dark_max, count=30
)
# Reading datafiles:
logger.info("Reading input files.")
chr_df = pd.read_csv(
chromosome_file,
compression="gzip",
sep="\t",
quotechar='"',
header=0,
dtype={"chr": str, "start": int, "end": int, "GC_ratio": float},
)
GENCODE_df = pd.read_csv(
gencode_file,
compression="gzip",
sep="\t",
header=0,
dtype={"chr": str, "start": int, "end": int, "type": str},
)
cyb_df = pd.read_csv(
cytoband_file,
compression="gzip",
sep="\t",
header=0,
dtype={"chr": str, "start": int, "end": int, "name": str, "type": str},
)
logger.info(f"Number of genome chunks: {len(chr_df):,}")
logger.info(f"Number of GENCODE annotations in the genome: {len(GENCODE_df):,}")
logger.info(f"Number of cytological bands in the genome: {len(cyb_df):,}")
# Integrating cytoband, sequence and gene data:
logger.info("Integrating data...")
# Initialize data integrator:
integrator = DataIntegrator(chr_df)
# Convert genomic coordinates to plot coordinates:
integrator.add_xy_coordinates(width)
# Downstream processing depends on dummy status:
if dummy:
# Adding cytological band information to the data:
integrator.add_centromere(cyb_df)
# Adding dummy GENCODE annotation to genomic data:
integrator.add_dummy()
else:
# Adding GENCODE annotation to genomic data:
integrator.add_genes(GENCODE_df)
# Adding cytological band information to the data:
integrator.add_centromere(cyb_df)
# Assigning heterocromatic regions:
integrator.assign_hetero()
# Assigning colors to individual regions:
integrator.add_colors(color_picker)
# Extract integrated data:
integratedData = integrator.get_data()
# Save data for diagnostic purposes:
integratedData.to_csv("cica.tsv.gz", sep="\t", index=False, compression="infer")
return integratedData
def parse_arguments() -> argparse.Namespace:
# Processing command line parameters:
parser = argparse.ArgumentParser(
description="Script to plot genome chunks colored based on GC content and gene annotation. \
See github: https://github.com/DSuveges/GenomePlotter"
)
parser.add_argument(
"-c",
"--chromosome",
help="Selected chromosome to process",
required=True,
type=str,
)
parser.add_argument(
"-w", "--width", help="Number of chunks in one row.", type=int, default=200
)
parser.add_argument(
"-p",
"--pixel",
help="The size of a plotted chunk in pixels (default: 3).",
type=int,
default=9,
)
parser.add_argument(
"-s",
"--darkStart",
help="Fraction of the width from where the colors start getting darker (default: 0.75).",
type=float,
default=0.75,
)
parser.add_argument(
"-m",
"--darkMax",
help="How dark a pixel can get at the right end of the plot (default: 0.15).",
type=float,
default=0.15,
)
parser.add_argument(
"-f",
"--folder",
help="Folder into which the plots are saved.",
type=str,
required=True,
)
parser.add_argument(
"--textFile",
help="Flag to indicate if svg file should also be saved.",
action="store_true",
)
parser.add_argument(
"-g",
"--geneFile",
help="A .bed file with genes to add to the chromosome.",
type=str,
required=False,
)
parser.add_argument(
"-t",
"--test",
help="The number of chunks to be read (by default the whole chromosome is processed.)",
type=int,
default=0,
)
parser.add_argument(
"--dummy",
help="If instead of the chunks, a dummy is drawn with identical dimensions",
action="store_true",
)
parser.add_argument(
"--config",
help="Specifying json file containing custom configuration",
type=str,
required=True,
)
return parser.parse_args()
if __name__ == "__main__":
# Extracting submitted options:
args = parse_arguments()
chromosome = args.chromosome
width = args.width
pixel = args.pixel
dark_start = args.darkStart
dark_max = args.darkMax
dummy = args.dummy
config_file = args.config
plot_folder = os.path.abspath(args.folder)
# Initialise logger:
with open("logger_config.yaml", "r") as stream:
logger_config = yaml.safe_load(stream)
logging.config.dictConfig(logger_config)
logger = logging.getLogger(__name__)
# Loading config:
with open(args.config) as f:
try:
configuration = Config(**json.load(f))
except json.decoder.JSONDecodeError:
raise ValueError(
f"The provided config file ({args.config}) is not a valid JSON file."
)
# Reporting parameters:
logger.info(f"Generating plot for chromosome: {chromosome}")
logger.info("Processing parameters.")
logger.info(f"Number of chunks in one row: {width}")
logger.info(f"Pixel size: {pixel}")
logger.info(f"Dark start: {dark_start}, dark max: {dark_max}")
logger.info(f"Plot is going to be saved into folder: {plot_folder}")
if dummy:
logger.info("Creating dummy without chromosome details.")
# Output file name:
output_filename = (
f"{plot_folder}/chr{chromosome}_dummy.png"
if dummy
else f"{plot_folder}/chr{chromosome}.png"
)
# Initilise configuration:
with open(config_file) as f:
try:
config_manager = Config(**json.load(f))
except json.decoder.JSONDecodeError:
raise ValueError(
f"The provided config file ({config_file}) is not a valid JSON file."
)
# Set new configuration:
config_manager.plot_parameters.width = width
config_manager.plot_parameters.pixel_size = pixel
config_manager.plot_parameters.dark_start = dark_start
config_manager.plot_parameters.dark_max = dark_max
config_manager.basic_parameters.plot_folder = plot_folder
# Updating config file:
logger.info(f"Updating config file: {config_file}")
config_manager.save(config_file)
# Integrating data:
logger.info("Integrating data...")
integratedData = integrator_wrapper(config_manager, dummy, chromosome)
# Generate chromosome plot
logger.info("Initializing plot.")
x = ChromosomePlotter(integratedData, pixel=pixel)
if dummy:
logger.info("Generating dummy plot.")
x.draw_dummy()
else:
logger.info("Generating plot.")
x.draw_chromosome()
# Extract data after plotting:
plot_width = x.get_plot_with()
plot_height = x.get_plot_height()
plot_data = x.return_svg()
# Initialize svg wrapper object with the returned data:
chromosomeSvgObject = svg_handler(plot_data, plot_width, plot_height)
# Generate gwas annitation:
gwas_annotation = gwas_annotation_wrapper(config_manager, chromosome)
chromosomeSvgObject.appendSvg(gwas_annotation)
# Generate cytoband annotation:
cytoband_annotation_obj = cytoband_annotation_wrapper(config_manager, chromosome)
(cyb_width, cyb_height) = cytoband_annotation_obj.get_dimensions()
cyb_svg = svg_handler(cytoband_annotation_obj.return_svg(), cyb_width, cyb_height)
chromosomeSvgObject.group(translate=(cyb_width, 0))
chromosomeSvgObject.mergeSvg(cyb_svg)
if args.geneFile:
# Get centromere position:
centromerePos = get_centromere_position(
config_manager.get_cytoband_file(), chromosome
)
# Get plot dimension:
plot_height = chromosomeSvgObject.getHeight()
# Create gene annotator object:
gene_annot = genes_annotation_wrapper(
config_manager, chromosome, plot_height, args.geneFile
)
# Generate annotation:
gene_annot.generate_gene_annotation()
dimensions = gene_annot.get_dimensions()
gene_svg = svg_handler(
width=800,
height=abs(dimensions[0]) + dimensions[1],
svg_string=gene_annot.get_annotation(),
)
# Move svg object if there are negative values:
if abs(dimensions[0]) > 0:
gene_svg.group(translate=(0, abs(dimensions[0])))
chromosomeSvgObject.group(translate=(0, abs(dimensions[0])))
# Merging together with the chromosome:
gene_svg.group(translate=(chromosomeSvgObject.getWidth(), 0))
chromosomeSvgObject.mergeSvg(gene_svg)
# Save file:
logger.info(f"Saving image: {output_filename}")
chromosomeSvgObject.savePng(output_filename)
if args.textFile:
logger.info(f'Saving svg file: {output_filename.replace("png","svg")}')
chromosomeSvgObject.saveSvg(output_filename.replace("png", "svg"))
logger.info("All done.")