-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmuzero_model.py
1058 lines (900 loc) · 58.4 KB
/
muzero_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import os
import json
from neural_network_mlp_model import l1, l2, weights_init
from neural_network_mlp_model import Loss_function
import itertools
import gymnasium as gym
class Muzero:
def __init__(self,
model_structure="mlp_model",
observation_space_dimensions=None,
action_space_dimensions=None,
state_space_dimensions=9,
k_hypothetical_steps=10,
learning_rate=1e-3,
optimizer = "adam",
lr_scheduler = None,
loss_type = "general",
device='cpu',
num_of_epoch=300,
hidden_layer_dimensions=16,
number_of_hidden_layer=1,
load=False,
type_format=torch.float32,
use_amp=True,
scaler_on=True,
bin_method="uniform_bin",
bin_decomposition_number=10,
priority_scale=1.,
rescale_value_loss = 1.):
"""
Init muzero model
Parameters
----------
model_structure (str):
choice between "lstm_model", "mlp_model" and "vision_model".
Defaults to None.
observation_space_dimensions (gym.observation_space):
the observation space return by a gym env.
Defaults to None.
action_space_dimensions (gym.action_space):
the action space return by a gym env.
Defaults to None.
state_space_dimensions (int):
int.
Choose an odd number because the state neeed to be split in an array
with 0 as origin and negative left side and positive right side
example: [-2 , -1 , 0 , 1 , 2] = 5
Defaults to None.
k_hypothetical_steps (int):
choice between 0, 5 and 10.
Defaults to None.
learning_rate (float):
choice between 0.1, 0.01, 0.001 and 0.0001.
Defaults to 1e-3.
optimizer (str):
choice between "adam" or "sgd".
Defaults to "adam".
lr_scheduler (str):
Pytorch scheduler
choice between "steplr","cosineannealinglr","cosineannealinglrwarmrestarts","onecyclelr" or None.
None : Do not apply any scheduler.
"steplr" : Decays the learning rate of each parameter group by gamma.
"cosineannealinglr" : Decays the learning rate of each parameter using cosine annealing schedule.
"cosineannealinglrwarmrestarts" : Decays the learning rate of each parameter using cosine annealing warm restarts schedule.
"onecyclelr" : Decays the learning rate according to the 1cycle learning rate policy.
Defaults to None.
loss_type (str):
choice between "general" and "game",
"general": [ value: cross entropy, policy: cross entropy , reward: cross entropy]
"game": [ value: mse, policy: cross entropy , reward: 0 ]
Defaults to "general".
device (str):
choice between "cuda" or "cpu".
"cuda" : Use GPU for training and inference.
"cpu" : Use CPU for training and inference.
Defaults to 'cpu'.
num_of_epoch (int):
number of epoch.
Defaults to 300.
hidden_layer_dimensions (int):
Defaults to 64.
number_of_hidden_layer (int):
Defaults to 1.
load (bool):
choice between True or False.
Defaults to False.
type_format (torch.dtype):
choice a pytorch dtype like:
torch.float16,
torch.bfloat16,
torch.float32,
torch.float64.
Defaults to torch.float32.
use_amp (bool):
choice between True and False to use mix precision
Defaults to True.
scaler_on (bool):
Automatically turn on and off following use_amp parameter.
Defaults to None.
bin_method (str):
choice between "linear_bin" and "uniform_bin".
"linear_bin" : sample from bound with linear split
"uniform_bin" : sample from bound with uniform split
Defaults to "uniform_bin".
bin_decomposition_number (int):
int : the number of sampled variable from the distribution of bin_method
Defaults to 10.
priority_scale (float):
scale the new priority value ( beta for priority in the paper)
Defaults to 1.
rescale_value_loss (float): scale value loss to give it more or less importance.
Defaults to 1
"""
self.reset(model_structure, observation_space_dimensions, action_space_dimensions,
state_space_dimensions, k_hypothetical_steps,
learning_rate,optimizer,
lr_scheduler,loss_type,device,
num_of_epoch, hidden_layer_dimensions,
number_of_hidden_layer, load,
type_format, use_amp,
scaler_on, bin_method,
bin_decomposition_number,priority_scale,rescale_value_loss)
def reset(self, model_structure="mlp_model", observation_space_dimensions=None,
action_space_dimensions=None, state_space_dimensions=1,
k_hypothetical_steps=10, learning_rate=1e-3,
optimizer = "adam", lr_scheduler = None,loss_type = "general",
device='cpu', num_of_epoch=300,
hidden_layer_dimensions=64, number_of_hidden_layer=1,
load=False, type_format=torch.float32,
use_amp=True, scaler_on=True,
bin_method="uniform_bin", bin_decomposition_number=10,
priority_scale=1.,rescale_value_loss=1.):
# # # the size of the encoded/support for value and reward
self.state_dimension = state_space_dimensions
assert isinstance(state_space_dimensions,int) and state_space_dimensions >= 1 , "state_space_dimensions ∈ int | {1 < state_space_dimensions < +inf) "
# # # number of weight for your recursive layer
self.hidden_layer_dimension = hidden_layer_dimensions
assert isinstance(hidden_layer_dimensions,int) and hidden_layer_dimensions >= 1, "hidden_layer_dimensions ∈ int | {1 < hidden_layer_dimensions < +inf)"
# # # Recursive layer, number of layer between your init layer and end layer
self.number_of_hidden_layer = number_of_hidden_layer
assert isinstance(number_of_hidden_layer,int) and number_of_hidden_layer >= 0 , "number_of_hidden_layer ∈ int | {0 < number_of_hidden_layer < +inf)"
# # # K future step to simulate in the forward pass and loss function
self.k_hypothetical_steps = k_hypothetical_steps
assert isinstance(k_hypothetical_steps,int) and k_hypothetical_steps >= 0, "k_hypothetical_steps ∈ int | {0 < k_hypothetical_steps < +inf)"
# # # type of loss you want, muzero paper show a "general" and "game" loss
# # # https://arxiv.org/pdf/1911.08265.pdf [pahe: 19]
self.loss_type = loss_type
assert isinstance(loss_type,str) and loss_type in ["general","game"] , "loss_type ∈ {general,general_kkc,game,game_mmc) ⊆ str"
# # # Learning rate of the optimizer
self.lr = learning_rate
assert isinstance(learning_rate,float) and learning_rate >= 0, "x ∈ float | {0 < learning_rate < +inf)"
# # # optimizer
self.opt = optimizer
assert isinstance(optimizer,str) and optimizer in ["adam","sgd"] , "optimizer ∈ {sgd,adam) ⊆ str"
# # # lr scheduler
self.sch = lr_scheduler
assert (isinstance(lr_scheduler,str) or lr_scheduler is None) and lr_scheduler in ["steplr","cosineannealinglr","cosineannealinglrwarmrestarts","onecyclelr",None] , "lr_scheduler ∈ {steplr,cosineannealinglr,cosineannealinglrwarmrestarts,onecyclelr) ⊆ str"
# # # total number of epoch that one want to compute
self.epoch = num_of_epoch
assert isinstance(num_of_epoch,int) and num_of_epoch >=1, "num_of_epoch ∈ int | {1 < num_of_epoch < +inf) "
# # # count the number of epoch
self.count = 0
assert isinstance(self.count,int) and self.count == 0, "self.count ∈ int | {0 ≤ self.count ≤ 0) "
# # # The device to compute on. (CPU or GPU)
self.device = device
assert isinstance(device,str) and device in ["cpu","cuda"] , "device ∈ {cpu,cuda) ⊆ str"
# # # The tensor type for the all process. Set to bfloat16 for cpu
if self.device == "cpu" and "float16" in str(type_format):
self.type_format = torch.bfloat16
else:
self.type_format = type_format
# # # Variable to enable mix precision
if self.device == "cpu" and use_amp:
print("Currently, AutocastCPU only support Bfloat16 as the autocast_cpu_dtype")
if "float16" in str(self.type_format):
self.use_amp = True
elif "float64" in str(self.type_format):
self.use_amp = False
else:
self.use_amp = use_amp
assert isinstance(use_amp,bool) , "use_amp ∈ bool "
# # # Variable to enable scale of the gradient for small tensor type
self.scaler_on = True if use_amp else scaler_on
assert isinstance(scaler_on,bool) , "scaler_on ∈ bool "
# # # Tag number for your model (can use it to save and reload it)
self.random_tag = np.random.randint(0, 100000000)
# # # Type of desire model, which will set the type of observation.
self.model_structure = model_structure # 'vision_model' , 'mlp_model'
assert isinstance(model_structure,str) and model_structure in ['mlp_model','lstm_model','vision_model','vision_conv_lstm_model','transformer_model'] , "model_structure ∈ {mlp_model,lstm_model,vision_model,vision_conv_lstm_model,transformer_model) ⊆ str"
# # # init gradient scaler
self.scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
# # # allow or not float16 in model matmul operation
self.fp16backend = "float16" in str(self.type_format)
assert isinstance(self.fp16backend,bool) , "self.fp16backend ∈ bool "
# # # Unlock float16 for matmul depending on self.fp16backend value
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = self.fp16backend
#set default dtype
if not self.use_amp:
torch.set_default_dtype(self.type_format)
# # store all compute loss at the end of each epoch
self.store_loss = []
self.bin_method = bin_method
assert isinstance(bin_method,str) and bin_method in ["linear_bin","uniform_bin"] , "bin_method ∈ {linear_bin,uniform_bin) ⊆ str"
self.bin_decomposition_number = bin_decomposition_number
assert isinstance(bin_decomposition_number,int) and bin_decomposition_number >= 1, "bin_decomposition_number ∈ int | {1 < bin_decomposition_number < +inf)"
self.priority_scale = priority_scale
assert isinstance(priority_scale,(int,float)) and 0 <= priority_scale <= 1, "priority_scale ∈ float | {0 < priority_scale < 1)"
self.rescale_value_loss = rescale_value_loss
assert isinstance(rescale_value_loss,(int,float)) and 0 <= rescale_value_loss <=1, "rescale_value_loss ∈ float | {0 < rescale_value_loss < 1)"
if not load:
# # # vision model will use a resize(apply transform in game.py) 98,98,3 RGB image as observation
# # # mlp_model will flatten the game observation
self.observation_dimension = self.model_obs(model_structure,observation_space_dimensions)
# assert isinstance(self.observation_dimension,int) , "self.observation_dimension ∈ int | {1 < self.observation_dimension < +inf) "
self.model_repo()
# # # Init gym action space
action_space = Gym_space_transform(bin=bin_method, mode=bin_decomposition_number)
# # # will create a disctonary containing all the combinaison of action as a category
# # # depending on the split bin for continous box
# # # for discrete it will create the category of all possible mouve
# # # for discrete and continous box will create a dict of all combinaison and map it as categorical representation
action_space.design_observation_space(action_space_dimensions)
# # # your dictionary ( categorical map )
self.action_dictionnary = action_space.dictionary
# assert isinstance(self.action_dictionnary,list)
# # # the dimension of the categorical map
self.action_dimension = action_space.dict_shape[0]
assert (isinstance(self.action_dimension,int) and self.action_dimension >= 1), "self.action_dimension ∈ int | {1 < self.action_dimension < +inf) "
self.representation_function = Representation_function(observation_space_dimensions=self.observation_dimension,
state_dimension=self.state_dimension,
action_dimension=self.action_dimension,
hidden_layer_dimensions=self.hidden_layer_dimension,
number_of_hidden_layer=self.number_of_hidden_layer).to(self.device)
self.prediction_function = Prediction_function(state_dimension=self.state_dimension,
action_dimension=self.action_dimension,
observation_space_dimensions=self.observation_dimension,
hidden_layer_dimensions=self.hidden_layer_dimension,
number_of_hidden_layer=self.number_of_hidden_layer).to(self.device)
self.afterstate_prediction_function = Afterstate_prediction_function(state_dimension=self.state_dimension,
action_dimension=self.action_dimension,
observation_space_dimensions=self.observation_dimension,
hidden_layer_dimensions=self.hidden_layer_dimension,
number_of_hidden_layer=self.number_of_hidden_layer).to(self.device)
self.afterstate_dynamics_function = Afterstate_dynamics_function(state_dimension=self.state_dimension,
action_dimension=self.action_dimension,
observation_space_dimensions=self.observation_dimension,
hidden_layer_dimensions=self.hidden_layer_dimension,
number_of_hidden_layer=self.number_of_hidden_layer).to(self.device)
self.dynamics_function = Dynamics_function(state_dimension=self.state_dimension,
action_dimension=self.action_dimension,
observation_space_dimensions=self.observation_dimension,
hidden_layer_dimensions=self.hidden_layer_dimension,
number_of_hidden_layer=self.number_of_hidden_layer).to(self.device)
self.encoder_function = Encoder_function(observation_space_dimensions=self.observation_dimension,
state_dimension=self.state_dimension,
action_dimension=self.action_dimension,
hidden_layer_dimensions=self.hidden_layer_dimension,
number_of_hidden_layer=self.number_of_hidden_layer).to(self.device)
self.initiate_model_weight()
# # # If you are not using mix precision, it will set your tensor type.
self.model_without_amp()
# # # If the model is on gpu, set parallele batching.
self.model_parallel()
# # # tell the model if you are using RGB observation or game state
self.is_RGB = "vision" in self.model_structure
# # # init your loss function , optimizer and scheduler
self.init_criterion_and_optimizer()
def model_repo(self):
# to add a custom model with equivalent structure
def global_imports(modulename):
model_function = ["Representation_function",
"Prediction_function",
"Afterstate_prediction_function",
"Afterstate_dynamics_function",
"Dynamics_function",
"Encoder_function"]
for i in model_function:
context_module = __import__(modulename,fromlist=[model_function])
globals()[i] = getattr(context_module, i)
# # # Import the model that you are using for training and inference
# # # without previously declaring it. ( modular with equivalent class )
if self.model_structure == 'mlp_model':
global_imports("neural_network_mlp_model")
elif self.model_structure == 'lstm_model':
global_imports("neural_network_lstm_model")
elif self.model_structure == 'vision_model':
global_imports("neural_network_vision_model")
elif self.model_structure == 'vision_conv_lstm_model':
global_imports("neural_network_vision_conv_lstm_model")
elif self.model_structure == 'transformer_model':
global_imports("neural_network_transformer_decoder_model")
def model_obs(self,model_structure,observation_space_dimensions):
if "vision" in model_structure:
observation_dimension_per_model = (98, 98, 3)
else:
observation_dimension_per_model = self.obs_space(observation_space_dimensions)
return observation_dimension_per_model
def model_without_amp(self):
if not self.use_amp:
self.representation_function = self.representation_function.type(self.type_format)
self.prediction_function = self.prediction_function.type(self.type_format)
self.afterstate_prediction_function = self.afterstate_prediction_function.type(self.type_format)
self.afterstate_dynamics_function = self.afterstate_dynamics_function.type(self.type_format)
self.dynamics_function = self.dynamics_function.type(self.type_format)
self.encoder_function = self.encoder_function.type(self.type_format)
def initiate_model_weight(self):
if not "vision" in self.model_structure:
# initialize the model weight and bias
self.representation_function.apply(weights_init)
self.prediction_function.apply(weights_init)
self.afterstate_prediction_function.apply(weights_init)
self.afterstate_dynamics_function.apply(weights_init)
self.dynamics_function.apply(weights_init)
self.encoder_function.apply(weights_init)
def model_parallel(self):
if torch.cuda.device_count() > 1 and self.device != "cpu":
self.representation_function = torch.nn.DataParallel(self.representation_function)
self.prediction_function = torch.nn.DataParallel(self.prediction_function)
self.afterstate_prediction_function = torch.nn.DataParallel(self.afterstate_prediction_function)
self.afterstate_dynamics_function = torch.nn.DataParallel(self.afterstate_dynamics_function)
self.dynamics_function = torch.nn.DataParallel(self.dynamics_function)
self.encoder_function = torch.nn.DataParallel(self.encoder_function)
def init_criterion_and_optimizer(self):
# # # https://pytorch.org/docs/stable/nn.html#loss-functions
# # # if you prefer to use pytorch loss function
if self.loss_type == "general":
self.criterion_value = Loss_function(parameter = (self.action_dimension),
prediction = ["softmax_transform","zero_clamp_transform"],
label = ["zero_clamp_transform"]
).kldiv
self.criterion_reward = Loss_function(parameter = (self.action_dimension),
prediction = ["softmax_transform","zero_clamp_transform"],
label = ["zero_clamp_transform"]
).kldiv
self.criterion_policy = Loss_function(prediction = ["softmax_transform","zero_clamp_transform"],
label = ["zero_clamp_transform"]
).kldiv
self.value_afterstate_loss = Loss_function(prediction = ["softmax_transform","zero_clamp_transform"],
label = ["zero_clamp_transform"]
).kldiv
self.distribution_afterstate_loss = Loss_function(prediction = ["softmax_transform","zero_clamp_transform"],
label = ["zero_clamp_transform"]
).kldiv
self.vq_vae_commitment_cost = Loss_function(parameter = (self.action_dimension),
prediction = ["zero_clamp_transform"],
label = ["zero_clamp_transform"]
).kldiv
if self.loss_type == "game":
self.criterion_value = Loss_function(parameter = (self.action_dimension),
prediction = ["softmax_transform","zero_clamp_transform"],
label = ["no_transform"]
).mse
self.criterion_reward = Loss_function(parameter = (self.action_dimension),
prediction = ["softmax_transform","zero_clamp_transform"],
label = ["no_transform"]
).mse
self.criterion_policy = Loss_function(prediction = ["softmax_transform","zero_clamp_transform"],
label = ["zero_clamp_transform"]
).kldiv
self.value_afterstate_loss = Loss_function(prediction = ["softmax_transform","zero_clamp_transform"],
label = ["no_transform"]
).mse
self.distribution_afterstate_loss = Loss_function(prediction = ["softmax_transform","zero_clamp_transform"],
label = ["zero_clamp_transform"]
).kldiv
self.vq_vae_commitment_cost = Loss_function(parameter = (self.action_dimension),
prediction = ["zero_clamp_transform"],
label = ["no_transform"]
).mse
# # # model parameter feed to the optimizer
# # # you can change "lr" to specify particular lr for different model (delete lr= in optim)
self.params = [{'params': self.representation_function.parameters(), 'lr': self.lr},
{'params': self.prediction_function.parameters(), 'lr': self.lr},
{'params': self.afterstate_prediction_function.parameters(), 'lr': self.lr},
{'params': self.afterstate_dynamics_function.parameters(), 'lr': self.lr},
{'params': self.dynamics_function.parameters(), 'lr': self.lr},
{'params': self.encoder_function.parameters(), 'lr': self.lr}]
# # # an other way to do it: (will take the lr= of your optimizer and apply it to all the model using the optim.)
# self.params = list(self.representation_function.parameters()) + \
# list(self.dynamics_function.parameters()) + \
# list(self.prediction_function.parameters())
# # # Optimizer
if self.opt == "adam":
self.optimizer = optim.Adam(self.params, lr=self.lr, weight_decay=0) # weight_decay=1e-4 (pytorch l2 regularization)
if self.opt == "sgd":
self.optimizer = optim.SGD(self.params, lr=self.lr, momentum=0.9, weight_decay=0) # weight_decay=1e-4 (pytorch l2 regularization)
# # # Learning rate scheduler
self.scheduler_lr = ["steplr","cosineannealinglr","cosineannealinglrwarmrestarts","onecyclelr"]
if self.sch == self.scheduler_lr[0]:
self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, step_size=1, gamma=0.99)
if self.sch == self.scheduler_lr[1]:
# # https://arxiv.org/pdf/2104.06294.pdf refer at the muzero_unplug paper
self.scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optimizer, int(self.epoch))
if self.sch == self.scheduler_lr[2]:
self.scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(self.optimizer, int(self.epoch))
if self.sch == self.scheduler_lr[3]:
self.scheduler = torch.optim.lr_scheduler.OneCycleLR(self.optimizer, max_lr=self.lr, total_steps=self.epoch)
# # # the batch reshape is kept to match the
# # # muzero pseudo code, instead of using a
# # # more traditional Dataset class object
# # # and Dataloader
def reshape_batch(self, batches):
X, Y = [], []
# # # (bacth , importance_sampling_ratio , game_pos)
batch = batches[0]
# # # Batch :
# # # [([observation numpy array], [action onehot encoded numpy array[] , list[value, reward, policy])...]
# # observation
# batch of observation (state)
X.append([torch.cat(tuple(b[0][h] for b in batch), dim=0).type(self.type_format).to(self.device) for h in range(self.k_hypothetical_steps)])
# # batch of action
X.extend(torch.tensor([b[1][i].tolist() for b in batch],
dtype=self.type_format, device=self.device) for i in range(len(batch[0][1]))) # need to fix
# # batch of [value, policy, reward]
# print([(np.array([b[2][i][2] for b in batch])) for i in range(len(batch[0][2]))])
Y.extend(
[
torch.tensor([[b[2][i][0]] for b in batch], dtype=self.type_format, device=self.device),
torch.tensor(np.array([b[2][i][2] for b in batch]), dtype=self.type_format, device=self.device), # need to fix
torch.tensor([[b[2][i][1]] for b in batch], dtype=self.type_format, device=self.device)
]
for i in range(len(batch[0][2]))
)
batch_importance_sampling_ratio = torch.tensor(batches[1], dtype=self.type_format, device=self.device)
batch_game_position = batches[2]
return X, Y, batch_importance_sampling_ratio, batch_game_position
def obs_space(self, obs):
def checker(container):
if type(container) == gym.spaces.Discrete:
return torch.tensor(1)
if type(container) == gym.spaces.box.Box:
return torch.prod(torch.tensor(list(container.shape)))
if type(obs) in [gym.spaces.tuple.Tuple, tuple]:
return int(sum(checker(i) for i in obs))
else:
return int(checker(obs))
def one_hot_encode(self, action, counter_part):
if not torch.is_tensor(action):
action = torch.tensor(action).type(
torch.int64).to(device=self.device)
if not self.is_RGB:
if len(action.size()) == 2:
pass
if len(action.size()) == 0:
action = action[None, ...]
action = torch.nn.functional.one_hot(
action, num_classes=self.action_dimension).type(self.type_format)
if self.is_RGB:
if len(action.size()) == 2:
action = torch.argmax(action, dim=1, keepdim=False)
if len(action.size()) == 0:
action = action[None, ...]
action_one_hot = torch.ones((1,
1,
counter_part.shape[2],
counter_part.shape[3],)
).to(self.device).type(self.type_format)
action = torch.cat([((action_select+1) / self.action_dimension) * action_one_hot.clone()
for action_select in action], dim=0).type(self.type_format)
return action
def training_mode(self):
# # # https://pytorch.org/tutorials/beginner/saving_loading_models.html
# # Check if the gradient graph is computable or not
if not self.representation_function.training or not self.dynamics_function.training or not self.prediction_function.training:
self.representation_function.train()
self.prediction_function.train()
self.afterstate_prediction_function.train()
self.afterstate_dynamics_function.train()
self.dynamics_function.train()
self.encoder_function.train()
# # # https://arxiv.org/pdf/1911.08265.pdf [page: 14]
# # # SCALE TRANSFORM for value and reward prediction
# # # https://arxiv.org/pdf/1911.08265.pdf [page: 14]
# # # We then apply a transformation φ to the
# # # scalar reward and value targets in order
# # # to obtain equivalent categorical representations.
def transform_with_support(self, x):
shaper = self.state_dimension
support_base = torch.full_like(x, 0)
new_size = support_base.size()[:-1] + (shaper,)
support_base = support_base.expand(new_size)
x = torch.sign(x) * (torch.sqrt(torch.abs(x) + 1) - 1) + 0.001 * x
support_distribution = shaper // 2
remainder_support_distribution = int(
2*((shaper/2) - support_distribution))
x = torch.clamp(x, -support_distribution,
support_distribution + remainder_support_distribution)
sign = torch.sign(x)
# # # Generate one weight and support on the discrete array.
# # # one value is enough to reconstruct all.
support1 = torch.floor(x)
weight1 = torch.ceil(x) - x
support1 = (support1).flatten()[None]+support_distribution+1
support1 = torch.clamp(support1, - (shaper-1),
shaper-1).T.clone().type(torch.int64)
weight1 = (weight1*sign).flatten()[None].T
support_base = support_base.clone().type(weight1.dtype).scatter_(1, support1, weight1)
return support_base
# # # https://arxiv.org/pdf/1911.08265.pdf [page: 14]
# # # SCALE TRANSFORM for value and reward prediction
# # # Apply a transformation φ to the scalar reward and value targets in order
# # # to obtain equivalent categorical representations.
def inverse_transform_with_support(self, input):
shaper = self.state_dimension
support_distribution = int(shaper // 2)
remainder_support_distribution = int(
2*((shaper/2) - support_distribution))
# # # Compute softmax and sum the output to get a
# # # combine weight and value to inverse the transform
soft_input = torch.softmax(input, dim=1)
support_init = torch.tensor(list(
range(-support_distribution, support_distribution + remainder_support_distribution)))
support_reformat = support_init.expand(soft_input.shape).type(
soft_input.dtype).to(device=soft_input.device)
y = torch.sum(support_reformat * soft_input, dim=1, keepdim=True)
y = torch.sign(y) * (((torch.sqrt(1 + 4 * 0.001 *
(torch.abs(y) + 1 + 0.001)) - 1) / (2 * 0.001)) ** 2 - 1)
return y
def rescale_gradient_and_sum_loss(self,loss,gradient_scale):
self.mean_div += 1
# # # https://arxiv.org/pdf/1911.08265.pdf [page: 15]
# # # divide the gradient loss by 1 / num of unroll (k)
# # # for board game.
# loss.register_hook(lambda grad: grad * gradient_scale)
self.loss_nn += loss
self.loss.append(loss.data.clone().detach().cpu().mean())
# # # For explaination on the forward implement by pytorch:
# # # https://pytorch.org/docs/stable/generated/torch.nn.Module.html
# # # https://stephencowchau.medium.com/pytorch-module-call-vs-forward-c4df3ff304b1
# # compute the forward pass of the model
def compute_forward(self, X):
# # # gradient scaling value (keep the gradient value if you want to try with scaling gradient)
grad_scale = 0.5
# # # "X[0] is the initial observation state ( observation/or hidden state )
# # # initial_state -> embedded_state
state_normalized = self.representation_function(X[0][0])
# # # embedded_state -> policy , value
policy, value = self.prediction_function(state_normalized)
#save output of forward pass
Y_pred = [[value, policy, 0, 0, 0, 0, 0]]
for k in range(self.k_hypothetical_steps):
one_hot_encode_action = self.one_hot_encode(X[k + 1], state_normalized)
afterstate = self.afterstate_dynamics_function(state_normalized, one_hot_encode_action)
afterstate_prediction_prob,afterstate_prediction_value = self.afterstate_prediction_function(afterstate)
chance_code ,encode_output = self.encoder_function(X[0][k])
reward, next_state_normalized = self.dynamics_function(afterstate, self.one_hot_encode(chance_code, state_normalized))
policy, value = self.prediction_function(next_state_normalized)
# # # X[0][k] are next observation
# # # "X[k + 1] is the action onehot encoded of the batch
# # # We also scale the gradient at the start of the dynamics function by 1/2
# # # This ensures that the total gradient applied to the dynamics function stays constant.
# # # https://arxiv.org/pdf/1911.08265.pdf [page: 15]
# # # Reference to register_hook()
# # # https://pytorch.org/docs/stable/generated/torch.Tensor.register_hook.html
# next_state_normalized.register_hook(lambda grad: grad * grad_scale)
# afterstate.register_hook(lambda grad: grad * grad_scale)
# next_embedded_state become the new embedded_state
state_normalized = next_state_normalized
#save output of forward pass
Y_pred.append([value,
policy ,
reward,
afterstate_prediction_value ,
afterstate_prediction_prob,
encode_output,
chance_code ])
return Y_pred
def evaluate_loss(self):
self.loss_nn = 0.0
self.new_priority = []
for k , ( pred , target ) in enumerate(zip(self.Y_pred,self.Y)):
gradient_scale = 1.0 / self.k_hypothetical_steps if k > 0 else 1.0
predict_value_k_hypothetical_steps, target_value_k_hypothetical_steps = pred[0], target[0]
target_value_k_hypothetical_steps = self.transform_with_support(target_value_k_hypothetical_steps)
loss = self.criterion_value(predict_value_k_hypothetical_steps,target_value_k_hypothetical_steps)
self.rescale_gradient_and_sum_loss(loss * self.rescale_value_loss, gradient_scale)
predict_policy_k_hypothetical_steps, target_policy_k_hypothetical_steps = pred[1], target[1]
loss = self.criterion_policy(predict_policy_k_hypothetical_steps, target_policy_k_hypothetical_steps)
self.rescale_gradient_and_sum_loss(loss , gradient_scale)
# # # [pred_reward_k_hypothetical_steps vs reward_k_hypothetical_steps]
# # # https://arxiv.org/pdf/1911.08265.pdf [page: 15]
if k > 0:
predict_reward_k_hypothetical_steps, target_reward_k_hypothetical_steps = pred[2], target[2]
target_reward_k_hypothetical_steps = self.transform_with_support(target_reward_k_hypothetical_steps)
loss = self.criterion_reward(predict_reward_k_hypothetical_steps, target_reward_k_hypothetical_steps)
self.rescale_gradient_and_sum_loss(loss, gradient_scale)
afterstate_prediction_value, afterstate_target_value = pred[3], target[0]
afterstate_target_value = self.transform_with_support(afterstate_target_value)
loss = self.value_afterstate_loss(afterstate_prediction_value, afterstate_target_value)
self.rescale_gradient_and_sum_loss(loss * self.rescale_value_loss, gradient_scale)
afterstate_prediction_prob, afterstate_target_prob = pred[4], pred[6]
loss = self.distribution_afterstate_loss(afterstate_prediction_prob, afterstate_target_prob)
self.rescale_gradient_and_sum_loss(loss, gradient_scale)
afterstate_prediction_prob, afterstate_target_prob = pred[5] , pred[6]
loss = self.vq_vae_commitment_cost(afterstate_prediction_prob, afterstate_target_prob)
self.rescale_gradient_and_sum_loss(loss, gradient_scale)
#compute priority to actualize the replay buffer with new value
self.new_priority.append(
(torch.abs(torch.nan_to_num(self.inverse_transform_with_support(pred[0])) - torch.nan_to_num(target[0])
)**self.priority_scale).detach().cpu().to(torch.float32).numpy()
)
# # # show backporpagation stack error of the gradient graph if it occur
# torch.autograd.set_detect_anomaly(True)
# L1 regularization
# self.loss_nn += l1((self.representation_function,
# self.dynamics_function,
# self.prediction_function),
# l1_weight_decay = 0.0001)
# # L2 regularization
self.loss_nn += l2((self.representation_function,
self.dynamics_function,
self.prediction_function),
l2_weight_decay = 0.0001)
if self.batch_importance_sampling_ratio.nelement() != 1:
self.loss_nn *= self.batch_importance_sampling_ratio
self.loss_nn = self.loss_nn.mean()
def backpropagation(self):
# # # https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html
self.optimizer.zero_grad()
# # use if you want to make gradient cliping betwen unscale and scale
# if self.device != "cpu" or not self.use_amp :
# self.scaler.unscale_(self.optimizer)
# # # more details at : https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html
# # # to implement with mix precision : https://pytorch.org/docs/stable/notes/amp_examples.html#gradient-clipping
# # gradient cliping
# torch.nn.utils.clip_grad_norm_(self.representation_function.parameters(), 1)
# torch.nn.utils.clip_grad_norm_(self.dynamics_function.parameters(), 1)
# torch.nn.utils.clip_grad_norm_(self.prediction_function.parameters(), 1)
# # # more details at : https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html
# # comput backward pass of the gradient graph (backpropagation)
self.scaler.scale(self.loss_nn).backward() \
if self.device != "cpu" and self.use_amp \
else self.loss_nn.backward()
# # # Performs a single optimization step (optimizer parameter update).
if self.device != "cpu" and self.use_amp :
self.scaler.step(self.optimizer)
else: self.optimizer.step()
if self.device != "cpu" and self.use_amp :
self.scaler.update()
# # # # # update step in scheduler
if self.sch in self.scheduler_lr :
self.scheduler.step(epoch=self.count)
# # # (verbose) print learning rate of the scheduler lr
# if self.count % 10 == 0:
# print("LEARNING RATE: ",self.scheduler.get_last_lr())
# # # for custom lr step scheduler
# # # loss scheduler use in muzero (equivalent to cosine annealing)
# for g in self.optimizer.param_groups:
# new_lr = self.lr * (0.5 * (1 + torch.cos(torch.tensor(np.pi) * self.count / self.epoch)))
# g['lr'] = new_lr
# # (verbose) print learning custom lr every 1 epoch
# if self.count % 10 == 0:
# print("LEARNING RATE: ",new_lr)
# # count the number of epoch without having to input the epoch value
self.count += 1
# # list to store and combine all the computed loss for later analyse
self.store_loss.append(
[self.loss_nn.data.clone().detach().cpu()] + list(self.loss))
def train(self, batch):
self.training_mode()
# # list to store the computed loss
self.loss = []
self.mean_div = 0
# # reformate sample_batch() to pytorch batch without dataloader
self.X, self.Y, self.batch_importance_sampling_ratio, self.batch_game_position = self.reshape_batch(batch)
if self.use_amp:
with torch.autocast(device_type=self.device, dtype=self.type_format, enabled=self.use_amp),torch.set_grad_enabled(True):
self.Y_pred = self.compute_forward(self.X)
self.evaluate_loss()
else:
self.Y_pred = self.compute_forward(self.X)
self.evaluate_loss()
self.backpropagation()
return self.new_priority , self.batch_game_position
# TODO: accelerate inference : https://developer.nvidia.com/blog/accelerating-inference-up-to-6x-faster-in-pytorch-with-torch-tensorrt/
# https://pytorch.org/TensorRT/getting_started/installation.html#installation
def tensor_test(self,data):
# # test for input type as pytorch tensor
if not torch.is_tensor(data):
data = torch.from_numpy(data.astype(np.float32)).type(
self.type_format).to(self.device)
# # test for input tensor device ( should be the same than the model )
if data.device.type != self.device or data.dtype != self.device:
data = data.type(self.type_format).to(device=self.device)
return data
def representation_function_inference(self, state):
# # set model to eval mode if it is in train mode. (Gradrient graph unable)
if self.representation_function.training:
self.representation_function.eval()
if self.use_amp:
# # compute forward pass without gradient graph
with torch.autocast(device_type=self.device, dtype=self.type_format,enabled=self.use_amp),torch.no_grad():
# check for inconsistency in input
state = self.tensor_test(state)
# forward pass
state_normalized = self.representation_function(state)
else:
state = self.tensor_test(state)
state_normalized = self.representation_function(state)
# transfer to cpu
return state_normalized.detach().cpu()
def prediction_function_inference(self, state_normalized):
# # set model to eval mode if it is in train mode. (Gradrient graph unable)
if self.prediction_function.training:
self.prediction_function.eval()
if self.use_amp:
with torch.autocast(device_type=self.device, dtype=self.type_format,enabled=self.use_amp), torch.no_grad():
# check for inconsistency in input
state_normalized = self.tensor_test(state_normalized)
# forward pass
policy, value = self.prediction_function(state_normalized)
if self.fp16backend : policy = policy.to(torch.float32) #can't change type inside autocast
else:
state_normalized = self.tensor_test(state_normalized)
policy, value = self.prediction_function(state_normalized)
# # # softmax the policy output and transfer to cpu
policy = torch.nn.Softmax(dim=-1)(policy).detach().cpu().numpy()
# # # transform value array to scalar and transfer to cpu
value = self.inverse_transform_with_support(value).detach().flatten().type(torch.float).cpu().numpy()[0]
return policy,value
def afterstate_prediction_function_inference(self, state_normalized):
if self.afterstate_prediction_function.training:
self.afterstate_prediction_function.eval()
if self.use_amp:
with torch.autocast(device_type=self.device, dtype=self.type_format,enabled=self.use_amp), torch.no_grad():
state_normalized = self.tensor_test(state_normalized)
policy, value = self.afterstate_prediction_function(state_normalized)
if self.fp16backend : policy = policy.to(torch.float32)
else:
state_normalized = self.tensor_test(state_normalized)
policy, value = self.afterstate_prediction_function(state_normalized)
policy = torch.nn.Softmax(dim=-1)(policy).detach().cpu().numpy()
value = self.inverse_transform_with_support(value).detach().flatten().type(torch.float).cpu().numpy()[0]
return policy,value
def afterstate_dynamics_function_inference(self, state_normalized, action):
if self.afterstate_dynamics_function.training:
self.afterstate_dynamics_function.eval()
if self.use_amp:
with torch.autocast(device_type=self.device, dtype=self.type_format,enabled=self.use_amp),torch.no_grad():
state_normalized = self.tensor_test(state_normalized)
one_hot_encode_action = self.one_hot_encode(action, state_normalized)
next_state_normalized = self.afterstate_dynamics_function(state_normalized, one_hot_encode_action)
next_state_normalized = next_state_normalized.detach().cpu()
else:
state_normalized = self.tensor_test(state_normalized)
one_hot_encode_action = self.one_hot_encode(action, state_normalized)
next_state_normalized = self.afterstate_dynamics_function(state_normalized, one_hot_encode_action)
next_state_normalized = next_state_normalized.detach().cpu()
return next_state_normalized
def dynamics_function_inference(self, state_normalized, action):
# # set model to eval mode if it is in train mode. (Gradrient graph unable)
if self.dynamics_function.training:
self.dynamics_function.eval()
if self.use_amp:
with torch.autocast(device_type=self.device, dtype=self.type_format,enabled=self.use_amp),torch.no_grad():
# check for inconsistency in input
state_normalized = self.tensor_test(state_normalized)
# # # action one_hot encoding to 2D ("2D") or 4D tensor ("4D")
one_hot_encode_action = self.one_hot_encode(
action, state_normalized)
# forward pass
reward, next_state_normalized = self.dynamics_function(
state_normalized, one_hot_encode_action)
# transfer next_state to cpu
next_state_normalized = next_state_normalized.detach().cpu()
# # # transform reward array to scalar and transfer to cpu
reward = self.inverse_transform_with_support(
reward.type(torch.float)
).detach().flatten().type(torch.float).cpu().numpy()[0]
else:
state_normalized = self.tensor_test(state_normalized)
one_hot_encode_action = self.one_hot_encode(
action, state_normalized)
reward, next_state_normalized = self.dynamics_function(
state_normalized, one_hot_encode_action)
next_state_normalized = next_state_normalized.detach().cpu()
reward = self.inverse_transform_with_support(
reward.type(torch.float)
).detach().flatten().type(torch.float).cpu().numpy()[0]
return reward, next_state_normalized
def save_model(self, directory="model_checkpoint", tag=None, model_update_or_backtrack = None):
if model_update_or_backtrack is None:
if not os.path.exists(directory):
os.makedirs(directory)
if tag != 0:
self.random_tag = tag
torch.save(self.representation_function,f'{directory}/{self.random_tag}_muzero_representation_function.pt')
torch.save(self.prediction_function,f'{directory}/{self.random_tag}_muzero_prediction_function.pt')
torch.save(self.afterstate_prediction_function,f'{directory}/{self.random_tag}_muzero_afterstate_prediction_function.pt')
torch.save(self.afterstate_dynamics_function,f'{directory}/{self.random_tag}_muzero_afterstate_dynamics_function.pt')
torch.save(self.dynamics_function,f'{directory}/{self.random_tag}_muzero_dynamics_function.pt')
torch.save(self.encoder_function,f'{directory}/{self.random_tag}_muzero_encoder_function.pt')
init_variable = {
"model_structure": self.model_structure,
"observation_space_dimensions": self.observation_dimension,
"action_space_dimensions": self.action_dimension,
"state_space_dimensions": self.state_dimension,
"k_hypothetical_steps": self.k_hypothetical_steps,
"learning_rate": self.lr,
"optimizer" : self.opt,
"loss_type" : self.loss_type,
"lr_scheduler" : self.sch,
"num_of_epoch": self.epoch,
"device": self.device,
"hidden_layer_dimensions": self.hidden_layer_dimension,
"number_of_hidden_layer": self.number_of_hidden_layer,
"random_tag": self.random_tag,
"action_map": self.action_dictionnary,
"use_amp": self.use_amp,
"priority_scale" : self.priority_scale,
"rescale_value_loss" : self.rescale_value_loss
}
with open(f"{directory}/{self.random_tag}_muzero_init_variables.json", "w") as f:
json.dump(init_variable, f)
def load_model(self, model_directory="model_checkpoint", tag=0, observation_space_dimensions=None, type_format=torch.float32, device=None):
with open(f"{model_directory}/{tag}_muzero_init_variables.json", 'r') as openfile:
init_var = json.load(openfile)
self.reset(observation_space_dimensions=init_var["observation_space_dimensions"],
action_space_dimensions=init_var["action_space_dimensions"],
state_space_dimensions=init_var["state_space_dimensions"],
k_hypothetical_steps=init_var["k_hypothetical_steps"],
optimizer = init_var["optimizer"],
lr_scheduler = init_var["lr_scheduler"],
learning_rate=init_var["learning_rate"],
loss_type=init_var["loss_type"],
device=device if device != None else init_var["device"],
num_of_epoch=init_var["num_of_epoch"],
hidden_layer_dimensions=init_var["hidden_layer_dimensions"],
number_of_hidden_layer=init_var["number_of_hidden_layer"],
load=True,
type_format=type_format,
use_amp=init_var["use_amp"],
model_structure=init_var["model_structure"],
priority_scale=init_var["priority_scale"],
rescale_value_loss = init_var["rescale_value_loss"])
self.observation_dimension = init_var["observation_space_dimensions"]
self.model_repo()
self.action_dictionnary = init_var["action_map"]
self.action_dimension = torch.tensor(self.action_dictionnary).size(0)
self.representation_function = torch.load(f'{model_directory}/{init_var["random_tag"]}_muzero_representation_function.pt').to(self.device)
self.prediction_function = torch.load(f'{model_directory}/{init_var["random_tag"]}_muzero_prediction_function.pt').to(self.device)
self.afterstate_prediction_function = torch.load(f'{model_directory}/{init_var["random_tag"]}_muzero_afterstate_prediction_function.pt').to(self.device)
self.afterstate_dynamics_function = torch.load(f'{model_directory}/{init_var["random_tag"]}_muzero_afterstate_dynamics_function.pt').to(self.device)
self.dynamics_function = torch.load(f'{model_directory}/{init_var["random_tag"]}_muzero_dynamics_function.pt').to(self.device)
self.encoder_function = torch.load(f'{model_directory}/{init_var["random_tag"]}_muzero_encoder_function.pt').to(self.device)
self.model_without_amp()
self.model_parallel()
self.random_tag = tag if tag > 0 else init_var["random_tag"]
self.is_RGB = self.model_structure == 'vision_model'
self.init_criterion_and_optimizer()