forked from SayanoAI/RVC-Studio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtts_cli.py
269 lines (231 loc) · 10.9 KB
/
tts_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import hashlib
import json
import numpy as np
import torch
import os
from lib.infer_pack.text.cleaners import english_cleaners
from lib.slicer2 import Slicer
from lib.audio import MAX_INT16, load_input_audio, remix_audio
from lib import BASE_MODELS_DIR
from webui.downloader import BASE_CACHE_DIR, download_file
speecht5_checkpoint = "microsoft/speecht5_tts"
speecht5_vocoder_checkpoint = "microsoft/speecht5_hifigan"
stt_checkpoint = "microsoft/speecht5_asr"
bark_checkpoint = "suno/bark-small"
bark_voice_presets="v2/en_speaker_0"
tacotron2_checkpoint = "speechbrain/tts-tacotron2-ljspeech"
hifigan_checkpoint = "speechbrain/tts-hifigan-ljspeech"
EMBEDDING_CHECKPOINT = "speechbrain/spkrec-xvect-voxceleb"
os.makedirs(os.path.join(BASE_MODELS_DIR,"TTS","embeddings"),exist_ok=True)
TTS_MODELS_DIR = os.path.join(BASE_MODELS_DIR,"TTS")
STT_MODELS_DIR = os.path.join(BASE_MODELS_DIR,"STT")
DEFAULT_SPEAKER = os.path.join(TTS_MODELS_DIR,"embeddings","Sayano.npy")
def __speecht5__(text, speaker_embedding=None, device="cpu"):
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
tts_vocoder = SpeechT5HifiGan.from_pretrained(speecht5_vocoder_checkpoint,cache_dir=os.path.join(TTS_MODELS_DIR,speecht5_vocoder_checkpoint),device_map=device)
tts_processor = SpeechT5Processor.from_pretrained(speecht5_checkpoint,cache_dir=os.path.join(TTS_MODELS_DIR,speecht5_checkpoint),device_map=device)
tts_model = SpeechT5ForTextToSpeech.from_pretrained(speecht5_checkpoint,cache_dir=os.path.join(TTS_MODELS_DIR,speecht5_checkpoint),device_map=device)
inputs = tts_processor(text=text, return_tensors="pt")
input_ids = inputs["input_ids"]
input_ids = input_ids[..., :tts_model.config.max_text_positions]
dtype = torch.float32 if "cpu" in str(device) else torch.float16
speech = tts_model.generate_speech(input_ids.to(device), speaker_embedding.to(device).to(dtype), vocoder=tts_vocoder)
speech = (speech.cpu().numpy() * MAX_INT16).astype(np.int16)
return speech, 16000
def cast_to_device(tensor, device):
try:
return tensor.to(device)
except Exception as e:
print(e)
return tensor
def __bark__(text, device="cpu"):
from transformers import AutoProcessor, BarkModel
dtype = torch.float32 if "cpu" in str(device) else torch.float16
bark_processor = AutoProcessor.from_pretrained(
bark_checkpoint,
cache_dir=os.path.join(TTS_MODELS_DIR,bark_checkpoint),
torch_dtype=dtype)
bark_model = BarkModel.from_pretrained(
bark_checkpoint,
cache_dir=os.path.join(TTS_MODELS_DIR,bark_checkpoint),
torch_dtype=dtype).to(device)
# bark_model.enable_cpu_offload()
inputs = bark_processor(
text=[text],
return_tensors="pt",
voice_preset=bark_voice_presets
)
tensor_dict = {k: cast_to_device(v,device) if hasattr(v,"to") else v for k, v in inputs.items()}
speech_values = bark_model.generate(**tensor_dict, do_sample=True)
sampling_rate = bark_model.generation_config.sample_rate
speech = (speech_values.cpu().numpy().squeeze() * MAX_INT16).astype(np.int16)
return speech, sampling_rate
def __tacotron2__(text, device="cpu"):
from speechbrain.pretrained import Tacotron2
from speechbrain.pretrained import HIFIGAN
hifi_gan = HIFIGAN.from_hparams(source=hifigan_checkpoint, savedir=os.path.join(TTS_MODELS_DIR,hifigan_checkpoint), run_opts={"device": device})
tacotron2 = Tacotron2.from_hparams(source=tacotron2_checkpoint, savedir=os.path.join(TTS_MODELS_DIR,tacotron2_checkpoint), run_opts={"device": device})
# Running the TTS
mel_output, _, _ = tacotron2.encode_text(text)
# Running Vocoder (spectrogram-to-waveform)
waveforms = hifi_gan.decode_batch(mel_output)
speech = (waveforms.cpu().numpy().squeeze() * MAX_INT16).astype(np.int16)
# return as numpy array
return remix_audio((speech, 22050),target_sr=16000)
def __edge__(text, speaker="en-US-JennyNeural"):
import edge_tts
import asyncio
from threading import Thread
temp_dir = os.path.join(BASE_CACHE_DIR,"tts","edge",speaker)
os.makedirs(temp_dir,exist_ok=True)
tempfile = os.path.join(temp_dir,f"{hashlib.md5(text.encode('utf-8')).hexdigest()}.wav")
async def fetch_audio():
communicate = edge_tts.Communicate(text, speaker)
try:
with open(tempfile, "wb") as data:
async for chunk in communicate.stream():
if chunk["type"] == "audio":
data.write(chunk["data"])
except Exception as e:
print(e)
thread = Thread(target=asyncio.run, args=(fetch_audio(),),name="edge-tts",daemon=True)
thread.start()
thread.join()
try:
audio, sr = load_input_audio(tempfile,sr=16000)
return audio, sr
except Exception as e:
print(e)
return None
def __silero__(text, speaker="lj_16khz"):
from silero import silero_tts
model, symbols, sample_rate, _, apply_tts = silero_tts(
repo_or_dir='snakers4/silero-models',
language="en",
speaker=speaker)
audio = apply_tts(texts=[text],
model=model,
symbols=symbols,
sample_rate=sample_rate,
device="cpu")
return audio[0].cpu().numpy(), 16000
def __vits__(text,speaker=os.path.join(BASE_MODELS_DIR,"VITS","pretrained_ljs.pth")):
from lib.infer_pack.models import SynthesizerTrn
from lib.infer_pack.text.symbols import symbols
from lib.infer_pack.text import text_to_sequence
from lib.infer_pack.commons import intersperse
from lib import utils
hps = utils.get_hparams_from_file(os.path.join(BASE_MODELS_DIR,"VITS","configs","ljs_base.json"))
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda()
_ = net_g.eval()
_ = utils.load_checkpoint(speaker, net_g, None)
stn_tst = get_text(text, hps)
with torch.no_grad():
x_tst = stn_tst.cuda().unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.678, noise_scale_w=0.6, length_scale=1.1)[0][0,0].data.cpu().float().numpy()
return audio, hps.data.sampling_rate
def generate_speech(text, speaker=None, method="speecht5",device="cpu",dialog_only=False):
text = english_cleaners(text.strip(),dialog_only=dialog_only) #clean text
if text and len(text) == 0:
return (np.zeros(0).astype(np.int16),16000)
speaker_embedding = None
if method=="speecht5":
if type(speaker)==str:
embedding_path = os.path.join(TTS_MODELS_DIR,"embeddings",f"{speaker}.npy")
if os.path.isfile(embedding_path):
speaker_embedding = np.load(embedding_path)
speaker_embedding = torch.tensor(speaker_embedding).half()
elif os.path.isfile(DEFAULT_SPEAKER):
print(f"Speaker {speaker} not found, using default speaker...")
speaker_embedding = np.load(DEFAULT_SPEAKER)
speaker_embedding = torch.tensor(speaker_embedding).half()
else: raise ValueError(f"Must provider a speaker_embedding for {method} inference!")
else: speaker_embedding = speaker
return __speecht5__(text,speaker_embedding,device)
elif method=="bark":
return __bark__(text,device)
elif method=="tacotron2":
return __tacotron2__(text,device)
elif method=="edge":
return __edge__(text)
elif method=="vits":
return __vits__(text)
elif method=="silero":
return __silero__(text)
else: return None
def load_stt_models(method="vosk",recognizer=None):
if method=="vosk":
assert recognizer is not None, "Must provide recognizer object for vosk model"
from vosk import Model
import zipfile
model_path = os.path.join(STT_MODELS_DIR,"vosk-model-en-us-0.22-lgraph")
if not os.path.exists(model_path):
temp_dir = os.path.join(BASE_CACHE_DIR,"zips")
os.makedirs(temp_dir,exist_ok=True)
name = os.path.basename(model_path)
zip_path = os.path.join(temp_dir,name)+".zip"
download_link = "https://alphacephei.com/vosk/models/vosk-model-en-us-0.22-lgraph.zip"
download_file((zip_path,download_link))
print(f"extracting zip file: {zip_path}")
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(STT_MODELS_DIR)
print(f"finished extracting zip file")
model = Model(model_path=model_path,lang="en")
recognizer.vosk_model = model
return {
"recognizer": recognizer,
"model": model
}
elif method=="speecht5":
from transformers import SpeechT5Processor, SpeechT5ForSpeechToText
processor = SpeechT5Processor.from_pretrained(stt_checkpoint,cache_dir=os.path.join(STT_MODELS_DIR,stt_checkpoint))
generator = SpeechT5ForSpeechToText.from_pretrained(stt_checkpoint,cache_dir=os.path.join(STT_MODELS_DIR,stt_checkpoint))
return {
"processor": processor,
"generator": generator
}
def transcribe_speech(input_audio,stt_models=None,stt_method="vosk",denoise=False):
if stt_models is None:
stt_models = load_stt_models(stt_method)
if stt_method=="vosk":
recognizer = stt_models["recognizer"]
model = stt_models["model"]
recognizer
input_data = recognizer.recognize_vosk(audio)
input_data = json.loads(input_data)
transcription = input_data["text"] if "text" in input_data else None
return transcription
elif stt_method=="speecht5":
processor = stt_models["processor"]
model = stt_models["generator"]
audio, sr = input_audio
slicer = Slicer(
sr=sr,
threshold=-42,
min_length=1500,
min_interval=400,
hop_size=15,
max_sil_kept=500
)
transcription = ""
for slice in slicer.slice(audio):
# if denoise: audio = nr.red`uce_noise(audio,sr=sr)
inputs = processor(audio=slice.T, sampling_rate=sr, return_tensors="pt")
audio_len = int(len(slice)*6.25//sr)+1 #average 2.5 words/s spoken at 2.5 token/word
predicted_ids = model.generate(**inputs, max_length=min(150,audio_len))
print(predicted_ids)
result = processor.batch_decode(predicted_ids, skip_special_tokens=True)
transcription += result[0]
return transcription
return None