-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_coco.py
324 lines (262 loc) · 15.7 KB
/
train_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
import sys
import time
from importlib import import_module
import random
import skimage.io as io
import numpy as np
import tensorflow as tf
from tensorflow.contrib import slim
from toy_dataset.coco_dataset import load_translated_data, get_gt_infos
from region_proposal_network import rpn
from faster_rcnn import faster_rcnn, process_faster_rcnn, build_faster_rcnn_losses
from utils.image_draw import draw_rectangle_with_name, draw_rectangle
import faster_rcnn_configs as frc
def _network(inputs, image_shape, gt_bboxes, cls_names):
if 'backbones' not in sys.path:
sys.path.append('backbones')
cnn = import_module(frc.BACKBONE, package='backbones')
# CNN
feature_map = cnn.inference(inputs)
features = slim.conv2d(feature_map, 512, [3, 3], normalizer_fn=slim.batch_norm,
normalizer_params={'decay': 0.995, 'epsilon': 0.0001},
weights_regularizer=slim.l2_regularizer(frc.L2_WEIGHT),
scope='rpn_feature')
# RPN
image_shape = tf.cast(tf.reshape(image_shape, [-1]), dtype=tf.int32)
gt_bboxes = tf.cast(tf.reshape(gt_bboxes, [-1, 5]), dtype=tf.int32)
rpn_cls_loss, rpn_cls_acc, rpn_bbox_loss, rois, labels, bbox_targets = rpn(features, image_shape, gt_bboxes)
# Image summary for RPN rois
class_names = frc.CLS_NAMES + cls_names
display_rois_img = inputs[0]
display_bg_indices = tf.reshape(tf.where(tf.equal(labels, 0)), [-1])
display_fg_indices = tf.reshape(tf.where(tf.not_equal(labels, 0)), [-1])
display_bg_rois = tf.gather(rois, display_bg_indices)
display_fg_rois = tf.gather(rois, display_fg_indices)
display_bg_img = tf.py_func(draw_rectangle, [display_rois_img, display_bg_rois], [tf.uint8])
display_fg_img = tf.py_func(draw_rectangle, [display_rois_img, display_fg_rois], [tf.uint8])
rpn_image_bg_summary = tf.summary.image('class_rois/background', display_bg_img)
rpn_image_fg_summary = tf.summary.image('class_rois/foreground', display_fg_img)
# RCNN
cls_score, bbox_pred = faster_rcnn(features, rois, image_shape)
cls_prob = slim.softmax(cls_score)
cls_categories = tf.cast(tf.argmax(cls_prob, axis=1), dtype=tf.int32)
rcnn_cls_acc = tf.reduce_mean(tf.cast(tf.equal(cls_categories, tf.cast(labels, tf.int32)), tf.float32))
final_bbox, final_score, final_categories = process_faster_rcnn(rois, bbox_pred, cls_prob, image_shape)
rcnn_bbox_loss, rcnn_cls_loss = build_faster_rcnn_losses(bbox_pred, bbox_targets, cls_prob, labels, frc.NUM_CLS + 1)
# ------------------------------BEGIN SUMMARY--------------------------------
# Add predicted bbox with confidence 0.25, 0.5, 0.75 and ground truth in image summary.
with tf.name_scope('rcnn_image_summary'):
# display_indices_25 = tf.reshape(tf.where(tf.greater_equal(final_score, 0.25) &
# tf.less(final_score, 0.5) &
# tf.not_equal(final_categories, 0)), [-1])
# display_indices_50 = tf.reshape(tf.where(tf.greater_equal(final_score, 0.5) &
# tf.less(final_score, 0.75) &
# tf.not_equal(final_categories, 0)), [-1])
display_indices_75 = tf.reshape(tf.where(tf.greater_equal(final_score, 0.75) &
tf.not_equal(final_categories, 0)), [-1])
# display_bboxes_25 = tf.gather(final_bbox, display_indices_25)
# display_bboxes_50 = tf.gather(final_bbox, display_indices_50)
display_bboxes_75 = tf.gather(final_bbox, display_indices_75)
# display_categories_25 = tf.gather(final_categories, display_indices_25)
# display_categories_50 = tf.gather(final_categories, display_indices_50)
display_categories_75 = tf.gather(final_categories, display_indices_75)
# display_image_25 = tf.py_func(draw_rectangle_with_name,
# [inputs[0], display_bboxes_25, display_categories_25, class_names],
# [tf.uint8])
# display_image_50 = tf.py_func(draw_rectangle_with_name,
# [inputs[0], display_bboxes_50, display_categories_50, class_names],
# [tf.uint8])
display_image_75 = tf.py_func(draw_rectangle_with_name,
[inputs[0], display_bboxes_75, display_categories_75, class_names],
[tf.uint8])
display_image_gt = tf.py_func(draw_rectangle_with_name,
[inputs[0], gt_bboxes[:, :-1], gt_bboxes[:, -1], class_names],
[tf.uint8])
rcnn_gt_image_summary = tf.summary.image('detection/gt', display_image_gt)
# tf.summary.image('detection/25', display_image_25)
# tf.summary.image('detection/50', display_image_50)
rcnn_75_image_summary = tf.summary.image('detection/75', display_image_75)
image_summary = tf.summary.merge([rpn_image_bg_summary, rpn_image_fg_summary,
rcnn_75_image_summary, rcnn_gt_image_summary])
# -------------------------------END SUMMARY---------------------------------
loss_dict = {'rpn_cls_loss': rpn_cls_loss,
'rpn_bbox_loss': rpn_bbox_loss,
'rcnn_cls_loss': rcnn_cls_loss,
'rcnn_bbox_loss': rcnn_bbox_loss}
acc_dict = {'rpn_cls_acc': rpn_cls_acc,
'rcnn_cls_acc': rcnn_cls_acc}
return final_bbox, final_score, final_categories, loss_dict, acc_dict, image_summary
# def _image_batch(image_list, label_list, size_list, batch_size=1):
# total_samples = len(image_list)
# while True:
# ind = random.choice(range(total_samples))
# img = io.imread(image_list[ind])
# img_dims = len(img.shape)
# if img_dims == 2:
# img = np.dstack([img, img, img])
# try:
# img = img[np.newaxis, :, :, :]
# except IndexError as err:
# print('Image dimention:', img_dims)
# print('Image ID:', image_list[ind])
# raise err
# gt_bboxes = get_gt_infos(label_list[ind])
# gt_bboxes = np.array(gt_bboxes, dtype=np.int32)
# img_size = size_list[ind]
# # img_size = np.array(size_list[ind], dtype=np.int32)
# yield img, gt_bboxes, img_size
def _image_batch(image_list, label_list, size_list, batch_size=1):
image_queue, label_queue, size_queue = tf.train.slice_input_producer([image_list, label_list, size_list])
image_batch, label_batch, size_batch = tf.train.batch()
reader = tf.TFRecordReader()
reader.read()
def _preprocess(inputs, gt_bboxes, image_size, minimum_length=800, is_training=True):
height, width = tf.to_float(image_size[0]), tf.to_float(image_size[1])
x1, y1, x2, y2, cls = tf.unstack(gt_bboxes, axis=1)
minimum_size = tf.minimum(height, width)
rate = minimum_length / minimum_size
true_fn = lambda: (minimum_length, tf.to_int32(tf.round(width * rate)))
false_fn = lambda: (tf.to_int32(tf.round(height * rate)), minimum_length)
new_height, new_width = tf.cond(tf.equal(minimum_size, height), true_fn, false_fn)
outputs = tf.image.resize_bilinear(inputs, size=(new_height, new_width))
new_x1 = tf.to_int32(tf.to_float(x1) * rate)
new_y1 = tf.to_int32(tf.to_float(y1) * rate)
new_x2 = tf.to_int32(tf.to_float(x2) * rate)
new_y2 = tf.to_int32(tf.to_float(y2) * rate)
return outputs, tf.stack([new_x1, new_y1, new_x2, new_y2, cls], axis=1), \
tf.stack([new_height, new_width], axis=0)
def _main():
train_file_list, train_label_list, train_image_size_list, \
val_file_list, val_label_list, val_image_size_list, cls_names = load_translated_data(
'/media/wx/新加卷/datasets/COCODataset')
batch_generator = _image_batch(train_file_list, train_label_list, train_image_size_list)
with tf.name_scope('inputs'):
tf_images = tf.placeholder(dtype=tf.float32,
shape=[frc.IMAGE_BATCH_SIZE, None, None, 3],
name='images')
tf_labels = tf.placeholder(dtype=tf.int32, shape=[None, 5], name='ground_truth_bbox')
tf_shape = tf.placeholder(dtype=tf.int32, shape=[None], name='image_shape')
# Preprocess input images
preprocessed_inputs, preprocessed_labels, preprocessed_shape = _preprocess(tf_images, tf_labels, tf_shape)
final_bbox, final_score, final_categories, loss_dict, acc_dict, image_summary = _network(preprocessed_inputs,
preprocessed_shape,
preprocessed_labels,
cls_names)
total_loss = frc.RPN_CLASSIFICATION_LOSS_WEIGHTS * loss_dict['rpn_cls_loss'] + \
frc.RPN_LOCATION_LOSS_WEIGHTS * loss_dict['rpn_bbox_loss'] + \
frc.FASTER_RCNN_CLASSIFICATION_LOSS_WEIGHTS * loss_dict['rcnn_cls_loss'] + \
frc.FASTER_RCNN_LOCATION_LOSS_WEIGHTS * loss_dict['rcnn_bbox_loss'] + \
0.0005 * tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
global_step = tf.train.get_or_create_global_step()
learning_rate = tf.train.piecewise_constant(global_step, frc.LEARNING_RATE_BOUNDARIES, frc.LEARNING_RATE_SCHEDULAR)
# Adam
# train_op = tf.train.AdamOptimizer(learning_rate).minimize(total_loss, global_step=global_step)
# train_op = tf.train.AdamOptimizer(0.003).minimize(total_loss, global_step=global_step)
# Momentum
train_op = tf.train.MomentumOptimizer(learning_rate, momentum=0.9).minimize(total_loss, global_step=global_step)
# RMS
# train_op = tf.train.RMSPropOptimizer(learning_rate, momentum=0.9).minimize(total_loss, global_step=global_step)
# Add train summary.
with tf.name_scope('loss'):
total_loss_summary = tf.summary.scalar('total_loss', total_loss)
rpn_cls_loss_summary = tf.summary.scalar('rpn_cls_loss', loss_dict['rpn_cls_loss'])
rpn_bbox_loss_summary = tf.summary.scalar('rpn_bbox_loss', loss_dict['rpn_bbox_loss'])
rcnn_cls_loss_summary = tf.summary.scalar('rcnn_cls_loss', loss_dict['rcnn_cls_loss'])
rcnn_bbox_loss_summary = tf.summary.scalar('rcnn_bbox_loss', loss_dict['rcnn_bbox_loss'])
with tf.name_scope('accuracy'):
rpn_cls_acc_summary = tf.summary.scalar('rpn_acc', acc_dict['rpn_cls_acc'])
rcnn_cls_acc_summary = tf.summary.scalar('rcnn_acc', acc_dict['rcnn_cls_acc'])
with tf.name_scope('train'):
lr_summary = tf.summary.scalar('learning_rate', learning_rate)
# summary_op = tf.summary.merge_all()
scale_summary = tf.summary.merge([total_loss_summary, rpn_cls_loss_summary, rpn_bbox_loss_summary,
rcnn_cls_loss_summary, rcnn_bbox_loss_summary,
rpn_cls_acc_summary, rcnn_cls_acc_summary, lr_summary])
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
saver = tf.train.Saver(max_to_keep=4)
if not os.path.exists(frc.SUMMARY_PATH):
os.mkdir(frc.SUMMARY_PATH)
with tf.Session() as sess:
if frc.PRE_TRAIN_MODEL_PATH:
print('Load pre-trained model:', frc.PRE_TRAIN_MODEL_PATH)
saver.restore(sess, frc.PRE_TRAIN_MODEL_PATH)
else:
sess.run(init_op)
start_time = time.strftime('%Y_%m_%d_%H_%M_%S')
log_dir = os.path.join(frc.SUMMARY_PATH, start_time)
save_model_dir = os.path.join(log_dir, 'model')
if not os.path.exists(save_model_dir):
os.mkdir(log_dir)
os.mkdir(save_model_dir)
summary_writer = tf.summary.FileWriter(log_dir, graph=sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess, coord)
step = 0
try:
while step < frc.MAXIMUM_ITERS + 1:
images, gt_bboxes, image_shape = batch_generator.__next__()
if len(gt_bboxes) == 0:
continue
feed_dict = {tf_images: images, tf_labels: gt_bboxes, tf_shape: image_shape}
step_time = time.time()
_, total_loss_, rpn_cls_loss_, rpn_bbox_loss_, rcnn_cls_loss_, rcnn_bbox_loss_, \
rpn_cls_acc_, rcnn_cls_acc_, scale_summary_str, image_summary_str, global_step_ = \
sess.run([train_op, total_loss, loss_dict['rpn_cls_loss'], loss_dict['rpn_bbox_loss'],
loss_dict['rcnn_cls_loss'], loss_dict['rcnn_bbox_loss'],
acc_dict['rpn_cls_acc'], acc_dict['rcnn_cls_acc'],
scale_summary, image_summary,
global_step], feed_dict)
step_time = time.time() - step_time
print(f'Iter: {step}',
f'| total_loss: {total_loss_:.3}',
f'| rpn_cls_loss: {rpn_cls_loss_:.3}',
f'| rpn_bbox_loss: {rpn_bbox_loss_:.3}',
f'| rcnn_cls_loss: {rcnn_cls_loss_:.3}',
f'| rcnn_bbox_loss: {rcnn_bbox_loss_:.3}',
f'| rpn_cls_acc: {rpn_cls_acc_:.3}',
f'| rcnn_cls_acc: {rcnn_cls_acc_:.3}',
f'| time: {step_time:.3}s')
if step % frc.REFRESH_LOGS_ITERS == 0 and step != 0:
summary_writer.add_summary(scale_summary_str, step)
saver.save(sess, os.path.join(save_model_dir, frc.MODEL_NAME + '.ckpt'), step)
if step % 50 == 0:
summary_writer.add_summary(image_summary_str, step)
summary_writer.flush()
step += 1
# if step % frc.REFRESH_LOGS_ITERS != 0:
# _, global_step_ = sess.run([train_op, global_step], feed_dict)
# else:
# step_time = time.time()
#
# _, total_loss_, rpn_cls_loss_, rpn_bbox_loss_, rcnn_cls_loss_, rcnn_bbox_loss_, \
# rpn_cls_acc_, rcnn_cls_acc_, summary_str, global_step_ = \
# sess.run([train_op, total_loss, loss_dict['rpn_cls_loss'], loss_dict['rpn_bbox_loss'],
# loss_dict['rcnn_cls_loss'], loss_dict['rcnn_bbox_loss'],
# acc_dict['rpn_cls_acc'], acc_dict['rcnn_cls_acc'], summary_op, global_step], feed_dict)
#
# step_time = time.time() - step_time
#
# print(f'Iter: {step}',
# f'| total_loss: {total_loss_:.3}',
# f'| rpn_cls_loss: {rpn_cls_loss_:.3}',
# f'| rpn_bbox_loss: {rpn_bbox_loss_:.3}',
# f'| rcnn_cls_loss: {rcnn_cls_loss_:.3}',
# f'| rcnn_bbox_loss: {rcnn_bbox_loss_:.3}',
# f'| rpn_cls_acc: {rpn_cls_acc_:.3}',
# f'| rcnn_cls_acc: {rcnn_cls_acc_:.3}',
# f'| time: {step_time:.3}s')
#
# summary_writer.add_summary(summary_str, step)
# summary_writer.flush()
#
# saver.save(sess, os.path.join(save_model_dir, frc.MODEL_NAME + '.ckpt'), step)
# step += 1
except tf.errors.OutOfRangeError:
print('done')
finally:
coord.request_stop()
coord.join(threads)
summary_writer.close()
if __name__ == '__main__':
_main()