-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrise_set
501 lines (404 loc) · 13.2 KB
/
rise_set
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
Subject: Sun and Moon rise/set program
Newsgroups: mod.sources
Approved: [email protected]
Mod.sources: Volume 5, Issue 10
Submitted by: Marc Kaufman <talcott!su-shasta.arpa:kaufman>
Enclosed is a -C- program to compute sun and moon rise and set times.
Have fun. The version below is the running source for a VAX.
Send bugs (if any) to <kaufman@SU-Shasta> at Stanford.
---------------------CUT HERE---------------------CUT HERE------------
/* <sdate.c>
* Compute various useful times
*
* Written by Marc T. Kaufman
* 14100 Donelson Place
* Los Altos Hills, CA 94022
* (415) 948-3777
*
* Based on : "Explanatory Supplement to the Astronomical Ephemeris
* and the American Ephemeris and Nautical Almanac",
* H.M. Nautical Almanac Office, London. Updated from
* equations in the 1985 Astronomical Almanac.
*
* Copyright 1986 by Marc Kaufman
*
* Permission to use this program is granted, provided it is not sold.
*
* This program was originally written on a VAX, under 4.2bsd.
* it was then ported to a 68000 system under REGULUS (Alcyon's version
* of UNIX system III). Major differences included: no 'double' and
* a default integer length of 'short'. Having been through all that,
* porting to your machine should be easy. Watch out for 'time' related
* functions and make sure your 'atan2' program works right.
*
* 850210 revised to 1985 Ephemeris - mtk
*/
#include <time.h>
#include <sys/types.h>
#include <sys/timeb.h>
#include <stdio.h>
#include <math.h>
long UTC, TDT, tim, tim2, localdst;
double Julian_Day, MJD, Tu, Ru, T70, Local, GMST, LST;
double Eqt, Tua, L, G, e, eps, g, alpha, delta, sd, cd, lha, lhr, sh, ch;
double la, lf, S, C, sp, cp, tp, Az, alt;
double Lm, lm, px, SD, am, dm;
double zs, x;
double fabs(), fmod(), asin(), acos();
struct tm *t, *Rlocaltime(), *gmtime();
char *tdate, *gmctime(), *localctime();
int ftime();
struct timeb tb;
#define Pi 3.1415926535
#define Degree_to_Radian ((2.0 * Pi)/ 360.)
#define Asec_Radian ((2.0 * Pi)/(360. * 60. * 60.))
#define Tsec_to_Radian ((2.0 * Pi)/( 24. * 60.* 60.))
#define Asec_to_Tsec (24./360.)
#define Sec_per_day (24 * 60 * 60)
#define Round 0.5 /* for rounding to integer */
#define J1900 /* 24 */15020.0 /* Julian Day number at Epoch 1900.0 */
#define J1970 /* 24 */40587.5 /* VAX clock Epoch 1970 Jan 1 (0h UT) */
#define J1985 /* 24 */46065.5 /* Epoch 1985 Jan 1 (0h UT) */
#define J2000 /* 24 */51545.0 /* Epoch 2000 Jan 1 (12h UT) */
#define Delta_T (54.6 + 0.9*(Julian_Day - J1985)/365.) /* TDT - UT */
/* (This is the position of my house ) */
#define Longitude (((122.)*60. + 8.)*60. + 3.) /* Arc-seconds West */
#define Latitude ((( 37.)*60. + 22.)*60. + 58.) /* Arc-seconds North */
#define f1 (1. - (1./298.25)) /* 1 - flattening of Earth */
/* the following alternate values are useful when debugging */
/*#define Longitude (((000.)*60. + 0.)*60. + 0.) /* Arc-seconds West */
/*#define Latitude ((( 35.)*60. + 0.)*60. + 0.) /* Arc-seconds North */
/*#define f1 1. /* 1 - flattening of Earth */
main() {
/* at this point we digress to discuss UNIX differences.
* In UCB UNIX we dont have ctime(), but do instead have asctime(),
* which works from the structures created by gmtime() and localtime().
* However, system time is kept in UTC (Greenwich), and the localtime
* routine correctly handles daylight savings time.
* Since the Regulus system only knows local time, a few direct
* fiddles are needed.
*/
/* correct apparent latitude for shape of Earth */
lf= atan(f1*f1 * tan(Latitude * Asec_Radian));
sp= sin(lf);
cp= cos(lf);
tp= sp/cp;
time(&UTC); /* get time */
Local= - Longitude/15.; /* Local apparent time correction */
{ int h, m, s; /* manual entry mode */
/* time(&tim);
t= gmtime(&tim);
tim= tim - (60 * (60 * t->tm_hour + t->tm_min) + t->tm_se);
scanf("%d %d %d", &h, &m, &s);
{UTC = tim + 60 * (60 * h + m) + s;
*/ }
/* ! t= gmtime(&UTC); /* this is Regulus time */
t= localtime(&UTC); /* VAX version */
/* Compute delta to real UTC from time zone time */
/* do this by hand since Regulus wont */
switch (t->tm_mon + 1) /* months are numbered from 0 */
{
case 1:
case 2:
case 3:
case 11:
case 12:
t->tm_isdst = 0;
break;
case 5:
case 6:
case 7:
case 8:
case 9:
t->tm_isdst = 1;
break;
case 4:
if ((t->tm_mday < 24) || (t->tm_mday - t->tm_wday <= 24))
t->tm_isdst = 0;
else
t->tm_isdst = 1;
break;
case 10:
if ((t->tm_mday < 25) || (t->tm_mday - t->tm_wday <= 25))
t->tm_isdst = 1;
else
t->tm_isdst = 0;
break;
}
ftime(&tb); /* gets time-zone information */
if (tb.dstflag == 0)
t->tm_isdst = 0; /* dst never used here */
localdst = (-tb.timezone + t->tm_isdst*60) * 60L; /* local time correction */
/* ! UTC -= localdst; /* this is real UTC, not what the OS gave us! */
printf("%.24s GMT\n", gmctime(&UTC));
stuff(UTC); /* start with local time info */
/* Compute Terrestrial Dynamical Time (this used to be called Ephemeris Time) */
TDT = UTC + (long)(Delta_T + Round);
tdate= gmctime(&TDT);
printf(" %.8s Terrestrial Dynamical Time\n", tdate+11);
printf("%.24s Local Civil Time\n", localctime(&UTC));
tim2 = UTC + (long)(Local + Round); /* Compute Local Solar Time */
tdate= gmctime(&tim2);
printf(" %.8s Local Mean Time\n", tdate+11);
/* compute phase of moon */
moondata(UTC);
Lm = fmod(Lm-L, 360.); /* phase is Lm - L (longitude of Sun) */
lm = fmod(Lm, 90.); /* excess over phase boundary */
printf("The Moon is%4.1f days past ", lm*36525./481267.883);
if (Lm < 90.) printf("New\n");
else if (Lm < 180.) printf("First Quarter\n");
else if (Lm < 270.) printf("Full\n");
else printf("Last Quarter\n");
printf("Julian Day 24%9.3f\n", Julian_Day);
tim2 = GMST + Round;
tdate= gmctime(&tim2);
printf(" %.8s Greenwich Mean Sidereal Time\n", tdate+11);
tim2 = LST + Round;
tdate= gmctime(&tim2);
printf(" %.8s Local Sidereal Time\n", tdate+11);
tim2= lha + Round;
tdate= gmctime(&tim2);
printf(" %.8s L.H.A. of Sun\n", tdate+11);
printf(" %11.3f Degrees Declnation\n",delta/3600.);
printf("Azimuth %11.3f Degrees\n",Az/3600.);
printf("Elevation %11.3f Degrees\n",alt/3600.);
/* compute sunrise and sunset */
t= Rlocaltime(&UTC); /* compute start of day */
tim = UTC - (3600L * t->tm_hour + 60L * t->tm_min + t->tm_sec)
+ Sec_per_day/2; /* about noon */
zs = 90. + 50./60.; /* zenith angle of rise/set */
sunrise(tim, -1.0, zs, "Sunrise ");
printf(" ");
sunrise((long)(tim+Sec_per_day), -1.0, zs, "Tomorrow");
printf("\n");
sunrise(tim, 1.0, zs, "Sunset ");
printf(" ");
sunrise((long)(tim+Sec_per_day), 1.0, zs, "Tomorrow");
printf("\n");
/* compute moonrise and moonset */
tim = tim - Sec_per_day/2 - 31; /* about start of day */
zs = 90. + 34./60.; /* zenith angle of rise/set */
moonrise(tim, -1.0, zs, "Moonrise");
printf(" ");
moonrise((long)(tim+Sec_per_day), -1.0, zs, "Tomorrow");
printf("\n");
moonrise(tim, 1.0, zs, "Moonset ");
printf(" ");
moonrise((long)(tim+Sec_per_day), 1.0, zs, "Tomorrow");
printf("\n");
}
sunrise(t0, rs, z, s)
long t0;
double rs, z;
char *s;
{
double cz, dh;
long dt;
cz = cos(z * Degree_to_Radian); /* zenith distance of phenomonon */
do { /* iterate */
stuff(t0); /* compute declination and current hour angle */
dh= -tp*sd/cd + cz/(cp*cd);
if ((dh < -1.0) || (dh > 1.0)) {
printf("%.8s none ", s);
return;
}
dh=acos(dh)*rs;
dt= (dh - lhr) / Tsec_to_Radian;
t0 += dt;
} while (dt);
t0 += 30 /* seconds, rounding to nearest minute */;
tdate= localctime(&t0);
printf("%.8s %.5s ", s, tdate+11);
}
moonrise(t0, rs, z, s)
long t0;
double rs, z;
char *s;
{
#define SRATE 1.033863192 /* ratio of Moon's motion to Sun's motion */
double cz, dh, sd, cd;
long t1, dt;
moondata(t0); /* get starting declination of Moon */
/* compute zenith distance of phenomonon */
cz = cos(z * Degree_to_Radian + SD /* -px */);
/* first iteraton is forward only (to approx. phenom time) */
sd = sin(dm);
cd = cos(dm);
dh= -tp*sd/cd + cz/(cp*cd);
if ((dh < -1.0) || (dh > 1.0)) {
printf("%.8s none ", s);
return;
}
dh= acos(dh)*rs;
dt= fmod((dh - am), 2.0*Pi) * SRATE / Tsec_to_Radian;
t1 = t0 + dt;
do { /* iterate */
moondata(t1); /* compute declination and current hour angle */
cz = cos(z * Degree_to_Radian + SD /* -px */);
sd = sin(dm);
cd = cos(dm);
dh= -tp*sd/cd + cz/(cp*cd);
if ((dh < -1.0) || (dh > 1.0)) {
printf("%.8s none ", s);
return;
}
dh= acos(dh)*rs;
dt= (dh - am) * SRATE / Tsec_to_Radian;
t1 += dt;
} while (dt);
if ((t1 - t0) >= Sec_per_day) {
printf("%.8s none ", s);
return;
}
t1 += 30 /* seconds, rounding to nearest minute */;
tdate= localctime(&t1);
printf("%.8s %.5s ", s, tdate+11);
}
stuff(tim)
long tim;
{ /* main computation loop */
timedata(tim);
/* where is the Sun (angles are in seconds of arc) */
/* Low precision elements from 1985 Almanac */
L= 280.460 + 0.9856474 * MJD; /* Mean Longitde */
L = fmod(L, 360.); /* corrected for aberration */
g= 357.528 + 0.9856003 * MJD; /* Mean Anomaly */
g = fmod(g, 360.);
eps= 23.439 - 0.0000004 * MJD; /* Mean Obiquity of Ecliptic */
{ /* convert to R.A. and DEC */
double Lr, gr, epsr, lr, ca, sa, R;
double sA, cA, gphi;
Lr = L * Degree_to_Radian;
gr = g * Degree_to_Radian;
epsr = eps * Degree_to_Radian;
lr = (L + 1.915*sin(gr) + 0.020*sin(2.0*gr)) * Degree_to_Radian;
sd = sin(lr) * sin(epsr);
cd = sqrt(1.0 - sd*sd);
sa = sin(lr) * cos(epsr);
ca = cos(lr);
delta = asin(sd);
alpha = atan2(sa, ca);
/* equation of time */
Eqt= (Lr - alpha) / Tsec_to_Radian;
delta = delta / Asec_Radian;
alpha = alpha / Tsec_to_Radian;
lhr = (LST - alpha) * Tsec_to_Radian;
sh = sin(lhr);
ch = cos(lhr);
lhr= atan2(sh, ch); /* normalized -pi to pi */
lha= lhr / Tsec_to_Radian + Sec_per_day/2;
/* convert to Azimuth and altitude */
alt = asin(sd*sp + cd*ch*cp);
ca = cos(alt);
sA = -cd * sh / ca;
cA = (sd*cp - cd*ch*sp) / ca;
Az = atan2(sA, cA) / Asec_Radian;
Az = fmod(Az, 1296000. /* 360.*3600. */);
alt = alt / Asec_Radian;
}
}
moondata(tim)
long tim;
{
double lst, beta, rm, sa, ca, sl, cl, sb, cb, x, y, z, l, m, n;
/* compute location of the moon */
/* Ephemeris elements from 1985 Almanac */
timedata(tim);
Lm= 218.32 + 481267.883*Tu
+ 6.29 * sin((134.9 + 477198.85*Tu)*Degree_to_Radian)
- 1.27 * sin((259.2 - 413335.38*Tu)*Degree_to_Radian)
+ 0.66 * sin((235.7 + 890534.23*Tu)*Degree_to_Radian)
+ 0.21 * sin((269.9 + 954397.70*Tu)*Degree_to_Radian)
- 0.19 * sin((357.5 + 35999.05*Tu)*Degree_to_Radian)
- 0.11 * sin((186.6 + 966404.05*Tu)*Degree_to_Radian);
beta= 5.13 * sin(( 93.3 + 483202.03*Tu)*Degree_to_Radian)
+ 0.28 * sin((228.2 + 960400.87*Tu)*Degree_to_Radian)
- 0.28 * sin((318.3 + 6003.18*Tu)*Degree_to_Radian)
- 0.17 * sin((217.6 - 407332.20*Tu)*Degree_to_Radian);
px= 0.9508
+ 0.0518 * cos((134.9 + 477198.85*Tu)*Degree_to_Radian)
+ 0.0095 * cos((259.2 - 413335.38*Tu)*Degree_to_Radian)
+ 0.0078 * cos((235.7 + 890534.23*Tu)*Degree_to_Radian)
+ 0.0028 * cos((269.9 + 954397.70*Tu)*Degree_to_Radian);
/* SD= 0.2725 * px; */
rm= 1.0 / sin(px * Degree_to_Radian);
lst= (100.46 + 36000.77*Tu) * Degree_to_Radian
+ ((tim % Sec_per_day) + Local) * Tsec_to_Radian;
/* form geocentric direction cosines */
sl= sin(Lm * Degree_to_Radian);
cl= cos(Lm * Degree_to_Radian);
sb= sin(beta* Degree_to_Radian);
cb= cos(beta * Degree_to_Radian);
l= cb * cl;
m= 0.9175 * cb * sl - 0.3978 * sb;
n= 0.3978 * cb * sl + 0.9175 * sb;
/* R.A. and Dec of Moon, geocentric*/
am= atan2(m, l);
dm= asin(n);
/* topocentric rectangular coordinates */
cd= cos(dm);
sd= n;
ca= cos(am);
sa= sin(am);
sl= sin(lst);
cl= cos(lst);
x= rm * cd *ca - cp * cl;
y= rm * cd * sa - cp * sl;
z= rm * sd - sp;
/* finally, topocentric Hour-Angle and Dec */
am = lst - atan2(y, x);
ca = cos(am);
sa = sin(am);
am = atan2(sa,ca);
rm = sqrt(x*x + y*y + z*z);
dm = asin(z/rm);
px = asin(1.0 / rm);
SD = 0.2725 * px;
}
timedata(tim)
long tim;
{
/* compute seconds from 2000 Jan 1.5 UT (Ephemeris Epoch) */
/* the VAX Epoch is 1970 Jan 1.0 UT (Midnight on Jan 1) */
Julian_Day = (tim/Sec_per_day) +
(double)(tim % Sec_per_day)/Sec_per_day + J1970;
MJD= Julian_Day -J2000; /* Julian Days past Epoch */
Tu = MJD/36525.; /* Julian Centuries past Epoch */
/* compute Sidereal time */
Ru= 24110.54841 + Tu * (8640184.812866
+ Tu * (0.09304 - Tu * 6.2e-6)); /* seconds */
GMST = (tim % Sec_per_day) + Sec_per_day + fmod(Ru, (double)Sec_per_day);
LST = GMST + Local;
}
/* time functions, for Regulus */
char *gmctime(t) /* re-hack for VAX, since ctime gives local */
long *t;
{
long t1;
t1 = *t - localdst; /* convert to local time */
return(ctime(&t1));
}
char *localctime(t)
long *t;
{
long t1;
t1 = *t + localdst; /* convert to local time */
return(gmctime(&t1));
}
struct tm *Rlocaltime(t)
long *t;
{
long t1;
t1 = *t + localdst; /* convert to local time */
return(gmtime(&t1));
}
/* double precision modulus, put in range 0 <= result < m */
double fmod(x, m)
double x, m;
{
long i;
i = fabs(x)/m; /* compute integer part of x/m */
if (x < 0) return( x + (i+1)*m);
else return( x - i*m);
}
%%