-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
85 lines (62 loc) · 3.93 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
class OptimizerAE(object):
def __init__(self, preds, labels, pos_weight, norm, d_real, d_fake):
preds_sub = preds
labels_sub = labels
# Discriminator loss
self.dc_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_real), logits=d_real, name='dclreal'))
self.dc_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_fake), logits=d_fake, name='dclfake'))
self.dc_loss = self.dc_loss_fake + self.dc_loss_real
# Generator loss
generator_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_fake), logits=d_fake, name='gl'))
self.cost = norm * tf.reduce_mean(
tf.nn.weighted_cross_entropy_with_logits(logits=preds_sub, targets=labels_sub, pos_weight=pos_weight))
self.generator_loss = generator_loss + self.cost
self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)
all_variables = tf.trainable_variables()
dc_var = [var for var in all_variables if 'dc_' in var.name]
e_var = [var for var in all_variables if 'e_' in var.name]
with tf.variable_scope(tf.get_variable_scope()):
self.discriminator_optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.discriminator_learning_rate,
beta1=0.9, name='adam1').minimize(self.dc_loss, var_list=dc_var)
self.generator_optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.discriminator_learning_rate,
beta1=0.9, name='adam2').minimize(self.generator_loss, var_list=e_var)
self.opt_op = self.optimizer.minimize(self.cost)
self.grads_vars = self.optimizer.compute_gradients(self.cost)
class OptimizerVAE(object):
def __init__(self, preds, labels, model, num_nodes, pos_weight, norm, d_real, d_fake):
preds_sub = preds
labels_sub = labels
# Discriminator loss
dc_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_real), logits=d_real))
dc_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_fake), logits=d_fake))
self.dc_loss = dc_loss_fake + dc_loss_real
# Generator loss
generator_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_fake), logits=d_fake))
self.cost = norm * tf.reduce_mean(
tf.nn.weighted_cross_entropy_with_logits(logits=preds_sub, targets=labels_sub, pos_weight=pos_weight))
self.generator_loss = generator_loss + self.cost
self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)
all_variables = tf.trainable_variables()
dc_var = [var for var in all_variables if 'dc_' in var.op.name]
e_var = [var for var in all_variables if 'e_' in var.op.name]
with tf.variable_scope(tf.get_variable_scope(), reuse=False):
self.discriminator_optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.discriminator_learning_rate,
beta1=0.9, name='adam1').minimize(self.dc_loss, var_list=dc_var)
self.generator_optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.discriminator_learning_rate,
beta1=0.9, name='adam2').minimize(self.generator_loss, var_list=e_var)
# Latent loss
self.log_lik = self.cost
self.kl = (0.5 / num_nodes) * tf.reduce_mean(
tf.reduce_sum(1 + 2 * model.z_log_std - tf.square(model.z_mean) - tf.square(model.z_log_std), 1))
self.cost -= self.kl
self.opt_op = self.optimizer.minimize(self.cost)
self.grads_vars = self.optimizer.compute_gradients(self.cost)