Skip to content

Latest commit

 

History

History
548 lines (423 loc) · 42.4 KB

README.md

File metadata and controls

548 lines (423 loc) · 42.4 KB


StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation. StudioGAN aims to offer an identical playground for modern GANs so that machine learning researchers can readily compare and analyze a new idea.

News

Release Notes (v.0.3.0)

  • Add SOTA GANs: LGAN, TACGAN, StyleGAN2, MDGAN, MHGAN, ADCGAN, ReACGAN.
  • Add five types of differentiable augmentation: CR, DiffAugment, ADA, SimCLR, BYOL.
  • Implement useful regularizations: Top-K training, Feature Matching, R1-Regularization, MaxGP
  • Add Improved Precision & Recall, Density & Coverage, iFID, and CAS for reliable evaluation.
  • Support Inception_V3 and SwAV backbones for GAN evaluation.
  • Verify the reproducibility of StyleGAN2 and BigGAN.
  • Fix bugs in FreezeD, DDP training, Mixed Precision training, and ADA.
  • Support Discriminator Driven Latent Sampling, Semantic Factorization for BigGAN evaluation.
  • Support Wandb logging instead of Tensorboard.

Features

  • Extensive GAN implementations using PyTorch.
  • The only repository to train/evaluate BigGAN and StyleGAN2 baselines in a unified training pipeline.
  • Comprehensive benchmark of GANs using CIFAR10, Tiny ImageNet, CUB200, and ImageNet datasets.
  • Provide pre-trained models that are fully compatible with up-to-date PyTorch environment.
  • Easy to handle other personal datasets (i.e. AFHQ, anime, and much more!).
  • Better performance and lower memory consumption than original implementations.
  • Support seven evaluation metrics including iFID, improved precision & recall, density & coverage, and CAS.
  • Support Multi-GPU (DP, DDP, and Multinode DistributedDataParallel), Mixed Precision, Synchronized Batch Normalization, Wandb Visualization, and other analysis methods.

Implemented GANs

Method Venue Architecture GC DC Loss EMA
DCGAN arXiv'15 CNN/ResNet1 N/A N/A Vanilla False
LSGAN ICCV'17 CNN/ResNet1 N/A N/A Least Sqaure False
GGAN arXiv'17 CNN/ResNet1 N/A N/A Hinge False
WGAN-WC ICLR'17 ResNet N/A N/A Wasserstein False
WGAN-GP NIPS'17 ResNet N/A N/A Wasserstein False
WGAN-DRA arXiv'17 ResNet N/A N/A Wasserstein False
ACGAN-Mod2 - ResNet cBN AC Hinge False
ProjGAN ICLR'18 ResNet cBN PD Hinge False
SNGAN ICLR'18 ResNet cBN PD Hinge False
SAGAN ICML'19 ResNet cBN PD Hinge False
TACGAN Neurips'19 Big ResNet cBN TAC Hinge True
LGAN ICML'19 ResNet N/A N/A Vanilla False
BigGAN ICLR'19 Big ResNet cBN PD Hinge True
BigGAN-Deep ICLR'19 Big ResNet Deep cBN PD Hinge True
BigGAN-Mod3 - Big ResNet cBN PD Hinge True
LOGAN arXiv'19 Big ResNet cBN PD Hinge True
StyleGAN2 CVPR' 20 StyleGAN2 cAdaIN SPD Logistic True
CRGAN ICLR'20 Big ResNet cBN PD Hinge True
BigGAN + DiffAugment Neurips'20 Big ResNet cBN PD Hinge True
StyleGAN2 + ADA Neurips'20 StyleGAN2 cAdaIN SPD Logistic True
ContraGAN Neurips'20 Big ResNet cBN 2C Hinge True
MHGAN WACV'21 Big ResNet cBN MH MH True
ICRGAN AAAI'21 Big ResNet cBN PD Hinge True
ADCGAN arXiv'21 Big ResNet cBN ADC Hinge True
ReACGAN Neurips'21 Big ResNet cBN D2D-CE Hinge True

GC/DC indicates the way how we inject label information to the Generator or Discriminator.

EMA: Exponential Moving Average update to the generator. cBN : conditional Batch Normalization. cAdaIN: Conditional version of Adaptive Instance Normalization. AC : Auxiliary Classifier. PD : Projection Discriminator. TAC: Twin Auxiliary Classifier. SPD : Modified PD for StyleGAN. 2C : Conditional Contrastive loss. MH : Multi-Hinge loss. ADC : Auxiliary Discriminative Classifier. D2D-CE : Data-to-Data Cross-Entropy.

Differentiable Augmentations

Method Venue Target Loss
CR ICLR'2020 -
SimCLR ICML'2020 -
DiffAugment Neurips'2020 -
BYOL Neurips'2020 -
ADA Neurips'2020 Logistic

Training Techniques and Misc

Method Venue Target Architecture
FreezeD CVPRW'20 Except for StyleGAN2
Top-K Training Neurips'2020 -
SeFa CVPR'2021 BigGAN

Evaluation Metrics

Method Venue Architecture
Inception Score (IS) Neurips'16 Inception_V3
Frechet Inception Distance (FID) Neurips'17 Inception_V3
Intra-class FID - Inception_V3
Improved Precision & Recall Neurips'19 Inception_V3
Classifier Accuracy Score (CAS) Neurips'19 Inception_V3
Density & Coverage ICML'20 Inception_V3
SwAV FID ICLR'21 SwAV

Requirements

First, install PyTorch meeting your environment (at least 1.7, recommmended 1.10):

pip3 install torch==1.10.0+cu111 torchvision==0.11.1+cu111 torchaudio==0.10.0+cu111 -f https://download.pytorch.org/whl/cu111/torch_stable.html

Then, use the following command to install the rest of the libraries:

pip3 install tqdm ninja h5py kornia matplotlib pandas sklearn scipy seaborn wandb PyYaml click requests pyspng imageio-ffmpeg prdc

With docker, you can use:

docker pull mgkang/studio_gan:latest

This is my command to make a container named "StudioGAN".

docker run -it --gpus all --shm-size 128g --name StudioGAN -v /home/USER:/root/code --workdir /root/code mgkang/studio_gan:latest /bin/bash

Quick Start

Before starting, users should login wandb using their personal API key.

wandb login PERSONAL_API_KEY
  • Train (-t) and evaluate (-e) the model defined in CONFIG_PATH using GPU 0.
CUDA_VISIBLE_DEVICES=0 python3 src/main.py -t -e -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH
  • Train (-t) and evaluate (-e) the model defined in CONFIG_PATH through DataParallel using GPUs (0, 1, 2, 3).
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 src/main.py -t -e -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH
  • Train (-t) and evaluate (-e) the model defined in CONFIG_PATH through DistributedDataParallel using GPUs (0, 1, 2, 3), Synchronized batch norm, and Mixed precision.
export MASTER_ADDR="localhost"
export MASTER_PORT=2222
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 src/main.py -t -e -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH -DDP -sync_bn -mpc 

Try python3 src/main.py to see available options.

Dataset

  • CIFAR10/CIFAR100: StudioGAN will automatically download the dataset once you execute main.py.

  • Tiny ImageNet, ImageNet, or a custom dataset:

    1. download Tiny ImageNet and ImageNet. Prepare your own dataset.
    2. make the folder structure of the dataset as follows:
data
└── ImageNet or Tiny_ImageNet or CUSTOM
    ├── train
    │   ├── cls0
    │   │   ├── train0.png
    │   │   ├── train1.png
    │   │   └── ...
    │   ├── cls1
    │   └── ...
    └── valid
        ├── cls0
        │   ├── valid0.png
        │   ├── valid1.png
        │   └── ...
        ├── cls1
        └── ...

Supported Training/Testing Techniques

  • Load All Data in Main Memory (-hdf5 -l)

    CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -t -hdf5 -l -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH
  • DistributedDataParallel (Please refer to Here) (-DDP)

    ### NODE_0, 4_GPUs, All ports are open to NODE_1
    ~/code>>> export MASTER_ADDR=PUBLIC_IP_OF_NODE_0
    ~/code>>> export MASTER_PORT=AVAILABLE_PORT_OF_NODE_0
    ~/code/PyTorch-StudioGAN>>> CUDA_VISIBLE_DEVICES=0,1,2,3 python3 src/main.py -t -e -DDP -tn 2 -cn 0 -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH
    ### NODE_1, 4_GPUs, All ports are open to NODE_0
    ~/code>>> export MASTER_ADDR=PUBLIC_IP_OF_NODE_0
    ~/code>>> export MASTER_PORT=AVAILABLE_PORT_OF_NODE_0
    ~/code/PyTorch-StudioGAN>>> CUDA_VISIBLE_DEVICES=0,1,2,3 python3 src/main.py -t -e -DDP -tn 2 -cn 1 -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH
  • Mixed Precision Training (-mpc)

    CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -t -mpc -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH
  • Change Batch Normalization Statistics

    # Synchronized batchNorm (-sync_bn)
    CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -t -sync_bn -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH
    
    # Standing statistics (-std_stat, -std_max, -std_step)
    CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -e -std_stat -std_max STD_MAX -std_step STD_STEP -cfg CONFIG_PATH -ckpt CKPT -data DATA_PATH -save SAVE_PATH
    
    # Batch statistics (-batch_stat)
    CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -e -batch_stat -cfg CONFIG_PATH -ckpt CKPT -data DATA_PATH -save SAVE_PATH
  • Truncation Trick

    CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -e --truncation_factor TRUNCATION_FACTOR -cfg CONFIG_PATH -ckpt CKPT -data DATA_PATH -save SAVE_PATH
  • DDLS (-lgv -lgv_rate -lgv_std -lgv_decay -lgv_decay_steps -lgv_steps)

    CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -e -lgv -lgv_rate LGV_RATE -lgv_std LGV_STD -lgv_decay LGV_DECAY -lgv_decay_steps LGV_DECAY_STEPS -lgv_steps LGV_STEPS -cfg CONFIG_PATH -ckpt CKPT -data DATA_PATH -save SAVE_PATH
  • Freeze Discriminator (-freezeD)

    CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -t --freezeD FREEZED -ckpt SOURCE_CKPT -cfg TARGET_CONFIG_PATH -data DATA_PATH -save SAVE_PATH

Analyzing Generated Images

StudioGAN supports Image visualization, K-nearest neighbor analysis, Linear interpolation, Frequency analysis, TSNE analysis, and Semantic factorization. All results will be saved in SAVE_DIR/figures/RUN_NAME/*.png.

  • Image Visualization
CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -v -cfg CONFIG_PATH -ckpt CKPT -save SAVE_DIR

  • K-Nearest Neighbor Analysis (we have fixed K=7, the images in the first column are generated images.)
CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -knn -cfg CONFIG_PATH -ckpt CKPT -data DATA_PATH -save SAVE_PATH

  • Linear Interpolation (applicable only to conditional Big ResNet models)
CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -itp -cfg CONFIG_PATH -ckpt CKPT -save SAVE_DIR

  • Frequency Analysis
CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -fa -cfg CONFIG_PATH -ckpt CKPT -data DATA_PATH -save SAVE_PATH

  • TSNE Analysis
CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -tsne -cfg CONFIG_PATH -ckpt CKPT -data DATA_PATH -save SAVE_PATH

  • Semantic Factorization for BigGAN
CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -sefa -sefa_axis SEFA_AXIS -sefa_max SEFA_MAX -cfg CONFIG_PATH -ckpt CKPT -save SAVE_PATH

Metrics

StudioGAN supports Inception Score, Frechet Inception Distance, Improved Precision and Recall, Density and Coverage, Intra-Class FID, Classifier Accuracy Score, SwAV backbone FID. Users can get Intra-Class FID, Classifier Accuracy Score, SwAV backbone FID scores using -iFID, -GAN_train, -GAN_test, and --eval_backbone "SwAV" options, respectively.

1. Inception Score (IS)

Inception Score (IS) is a metric to measure how much GAN generates high-fidelity and diverse images. Calculating IS requires the pre-trained Inception-V3 network, and recent approaches utilize OpenAI's TensorFlow implementation.

To compute official IS, you have to make a "samples.npz" file using the command below:

CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -s -c CONFIG_PATH --checkpoint_folder CHECKPOINT_FOLDER --log_output_path LOG_OUTPUT_PATH

It will automatically create the samples.npz file in the path ./samples/RUN_NAME/fake/npz/samples.npz. After that, execute TensorFlow official IS implementation. Note that we do not split a dataset into ten folds to calculate IS ten times. We use the entire dataset to compute IS only once, which is the evaluation strategy used in the CompareGAN repository.

CUDA_VISIBLE_DEVICES=0,...,N python3 src/inception_tf13.py --run_name RUN_NAME --type "fake"

Keep in mind that you need to have TensorFlow 1.3 or earlier version installed!

Note that StudioGAN logs Pytorch-based IS during the training.

2. Frechet Inception Distance (FID)

FID is a widely used metric to evaluate the performance of a GAN model. Calculating FID requires the pre-trained Inception-V3 network, and modern approaches use Tensorflow-based FID. StudioGAN utilizes the PyTorch-based FID to test GAN models in the same PyTorch environment. We show that the PyTorch based FID implementation provides almost the same results with the TensorFlow implementation (See Appendix F of our paper).

3. Improved Precision and Recall (Prc, Rec)

Improved precision and recall are developed to make up for the shortcomings of the precision and recall. Like IS, FID, calculating improved precision and recall requires the pre-trained Inception-V3 model. StudioGAN uses the PyTorch implementation provided by developers of density and coverage scores.

4. Density and Coverage (Dns, Cvg)

Density and coverage metrics can estimate the fidelity and diversity of generated images using the pre-trained Inception-V3 model. The metrics are known to be robust to outliers, and they can detect identical real and fake distributions. StudioGAN uses the authors' official PyTorch implementation, and StudioGAN follows the author's suggestion for hyperparameter selection.

5. Precision and Recall (PR: F_1/8=Precision, F_8=Recall, Will be deprecated)

Precision measures how accurately the generator can learn the target distribution. Recall measures how completely the generator covers the target distribution. Like IS and FID, calculating Precision and Recall requires the pre-trained Inception-V3 model. StudioGAN uses the same hyperparameter settings with the original Precision and Recall implementation, and StudioGAN calculates the F-beta score suggested by Sajjadi et al.

Benchmark

※ We always welcome your contribution if you find any wrong implementation, bug, and misreported score.

We report the best IS, FID, and F_beta values of various GANs. B. S. means batch size for training.

To download all checkpoints reported in StudioGAN, Please click here.

CR, ICR, DiffAugment, ADA, and LO refer to regularization or optimization techiniques: CR (Consistency Regularization), ICR (Improved Consistency Regularization), DiffAugment (Differentiable Augmentation), ADA (Adaptive Discriminator Augmentation), and LO (Latent Optimization), respectively.

CIFAR10 (3x32x32)

When training and evaluating, we used the command below.

With a single TITAN RTX GPU, training BigGAN takes about 13-15 hours.

CUDA_VISIBLE_DEVICES=0 python3 src/main.py -t -e -hdf5 -l -batch_stat -ref "test" -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH

IS, FID, and F_beta values are computed using 10K test and 10K generated Images.

Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
DCGAN StudioGAN 6.638 49.030 0.833 0.795 Cfg Log Link
LSGAN StudioGAN 5.577 66.686 0.757 0.720 Cfg Log Link
GGAN StudioGAN 6.227 42.714 0.916 0.822 Cfg Log Link
WGAN-WC StudioGAN 2.579 159.090 0.190 0.199 Cfg Log Link
WGAN-GP StudioGAN 7.458 25.852 0.962 0.929 Cfg Log Link
WGAN-DRA StudioGAN 6.432 41.586 0.922 0.863 Cfg Log Link
ACGAN-Mod StudioGAN 6.629 45.571 0.857 0.847 Cfg Log Link
ProjGAN StudioGAN 7.539 33.830 0.952 0.855 Cfg Log Link
SNGAN StudioGAN 8.677 13.248 0.983 0.978 Cfg Log Link
SAGAN StudioGAN 8.680 14.009 0.982 0.970 Cfg Log Link
BigGAN Paper 9.224 14.73 - - - - -
BigGAN + CR Paper - 11.5 - - - - -
BigGAN + ICR Paper - 9.2 - - - - -
BigGAN + DiffAugment Repo 9.24 8.7 - - - - -
BigGAN-Mod StudioGAN 9.746 8.034 0.995 0.994 Cfg Log Link
BigGAN-Mod + CR StudioGAN 10.380 7.178 0.994 0.993 Cfg Log Link
BigGAN-Mod + ICR StudioGAN 10.153 7.430 0.994 0.993 Cfg Log Link
BigGAN-Mod + DiffAugment StudioGAN 9.775 7.157 0.996 0.993 Cfg Log Link
LOGAN StudioGAN TBA TBA TBA TBA Cfg TBA TBA
ContraGAN StudioGAN 9.729 8.065 0.993 0.992 Cfg Log Link
ContraGAN + CR StudioGAN 9.812 7.685 0.995 0.993 Cfg Log Link
ContraGAN + ICR StudioGAN 10.117 7.547 0.996 0.993 Cfg Log Link
ContraGAN + DiffAugment StudioGAN 9.996 7.193 0.995 0.990 Cfg Log Link
ReACGAN StudioGAN 9.974 7.792 0.995 0.990 Cfg Log Link
ReACGAN + CR StudioGAN 9.833 7.176 0.996 0.993 Cfg Log Link
ReACGAN + DiffAugment StudioGAN 10.181 6.717 0.996 0.994 Cfg Log Link

CIFAR10 (3x32x32) using StyleGAN2

When training and evaluating, we used the command below.

CUDA_VISIBLE_DEVICES=0,1 python3 src/main.py -t -e -hdf5 -l -mpc -ref "train" -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH

IS, FID, Dns, and Cvg values are computed using 50K train and 50K generated Images.

Method Reference IS(⭡) FID(⭣) Dns(⭡) Cvg(⭡) Cfg Log Weights
StyleGAN25 Paper 9.534 6.96 - - - - -
StyleGAN2 + ADA5 Paper 10.144 2.42 - - - - -
StyleGAN2 StudioGAN 10.149 3.889 0.979 0.893 Cfg Log Link
StyleGAN2 + D2D-CE StudioGAN 10.320 3.385 0.974 0.899 Cfg Log Link
StyleGAN2 + ADA StudioGAN 10.477 2.316 1.049 0.929 Cfg Log Link
StyleGAN2 + ADA + D2D-CE StudioGAN 10.548 2.325 1.052 0.929 Cfg Log Link

Tiny ImageNet (3x64x64)

When training and evaluating, we used the command below.

With 4 TITAN RTX GPUs, training BigGAN takes about 2 days.

CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -t -e -hdf5 -l -batch_stat -ref "valid" -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH

IS, FID, and F_beta values are computed using 10K validation and 10K generated Images.

Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
DCGAN StudioGAN 5.640 91.625 0.606 0.391 Cfg Log Link
LSGAN StudioGAN 5.381 90.008 0.638 0.390 Cfg Log Link
GGAN StudioGAN 5.146 102.094 0.503 0.307 Cfg Log Link
WGAN-WC StudioGAN 9.696 41.454 0.940 0.735 Cfg Log Link
WGAN-GP StudioGAN 1.322 311.805 0.016 0.000 Cfg Log Link
WGAN-DRA StudioGAN 9.564 40.655 0.938 0.724 Cfg Log Link
ACGAN-Mod StudioGAN 6.342 78.513 0.668 0.518 Cfg Log Link
ProjGAN StudioGAN 6.224 89.175 0.626 0.428 Cfg Log Link
SNGAN StudioGAN 8.412 53.590 0.900 0.703 Cfg Log Link
SAGAN StudioGAN 8.342 51.414 0.898 0.698 Cfg Log Link
BigGAN-Mod StudioGAN 11.998 31.920 0.956 0.879 Cfg Log Link
BigGAN-Mod + CR StudioGAN 14.887 21.488 0.969 0.936 Cfg Log Link
BigGAN-Mod + ICR StudioGAN 5.605 91.326 0.525 0.399 Cfg Log Link
BigGAN-Mod + DiffAugment StudioGAN 17.075 16.338 0.979 0.971 Cfg Log Link
ContraGAN StudioGAN 13.494 27.027 0.975 0.902 Cfg Log Link
ContraGAN + CR StudioGAN 15.623 19.716 0.983 0.941 Cfg Log Link
ContraGAN + ICR StudioGAN 15.830 21.940 0.980 0.944 Cfg Log Link
ContraGAN + DiffAugment StudioGAN 17.303 15.755 0.984 0.962 Cfg Log Link
ReACGAN StudioGAN 14.162 26.586 0.975 0.897 Cfg Log Link
ReACGAN + CR StudioGAN 16.505 20.251 0.982 0.934 Cfg Log Link
ReACGAN + DiffAugment StudioGAN 20.479 14.348 0.988 0.971 Cfg Log Link

ImageNet (3x128x128)

When training, we used the command below.

With 8 TESLA V100 GPUs, training BigGAN2048 takes about a month.

CUDA_VISIBLE_DEVICES=0,...,N python3 src/main.py -t -e -hdf5 -l -sync_bn --eval_type "valid" -cfg CONFIG_PATH -std_stat -std_max STD_MAX -std_step STD_STEP -data DATA_PATH -save SAVE_PATH

IS, FID, and F_beta values are computed using 50K validation and 50K generated Images.

Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
SNGAN StudioGAN 32.247 26.792 0.938 0.913 Cfg Log Link
SAGAN StudioGAN 29.848 34.726 0.849 0.914 Cfg Log Link
BigGAN Paper 98.84 8.7 - - - - -
BigGAN + TTUR Paper - 21.072 - - Cfg - -
BigGAN StudioGAN 28.633 24.684 0.941 0.921 Cfg Log Link
BigGAN StudioGAN 99.705 7.893 0.985 0.989 Cfg Log Link
ContraGAN + TTUR Paper 31.101 19.693 0.951 0.927 Cfg Log Link
ContraGAN StudioGAN 25.249 25.161 0.947 0.855 Cfg Log Link
ReACGAN StudioGAN 67.416 13.907 0.977 0.977 Cfg Log Link
ReACGAN StudioGAN 96.299 8.206 0.989 0.989 Cfg Log Link

AFHQ (3x512x512) using StyleGAN2

When training and evaluating, we used the command below.

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 src/main.py -t -e -hdf5 -l -mpc -ref "train" -cfg CONFIG_PATH -data DATA_PATH -save SAVE_PATH

IS, FID, Dns, and Cvg values are computed using 14,630 train and 14,630 generated Images.

Method Reference IS(⭡) FID(⭣) Dns(⭡) Cvg(⭡) Cfg Log Weights
StyleGAN2 + ADA StudioGAN 12.907 4.992 1.282 0.835 Cfg Log Link
StyleGAN2 + ADA + D2D-CE StudioGAN 12.792 4.950 - - Cfg Log Link

StudioGAN thanks the following Repos for the code sharing

Exponential Moving Average: https://github.com/ajbrock/BigGAN-PyTorch

Synchronized BatchNorm: https://github.com/vacancy/Synchronized-BatchNorm-PyTorch

Self-Attention module: https://github.com/voletiv/self-attention-GAN-pytorch

Implementation Details: https://github.com/ajbrock/BigGAN-PyTorch

Architecture Details: https://github.com/google/compare_gan

StyleGAN2: https://github.com/NVlabs/stylegan2

DiffAugment: https://github.com/mit-han-lab/data-efficient-gans

Adaptive Discriminator Augmentation: https://github.com/NVlabs/stylegan2

Tensorflow IS: https://github.com/openai/improved-gan

Tensorflow FID: https://github.com/bioinf-jku/TTUR

Pytorch FID: https://github.com/mseitzer/pytorch-fid

Tensorflow Precision and Recall: https://github.com/msmsajjadi/precision-recall-distributions

PyTorch Improved Precision and Recall: https://github.com/clovaai/generative-evaluation-prdc

PyTorch Density and Coverage: https://github.com/clovaai/generative-evaluation-prdc

License

PyTorch-StudioGAN is an open-source library under the MIT license (MIT). However, portions of the library are avaiiable under distinct license terms: StyleGAN and StyleGAN-ADA are licensed under NVIDIA source code license, Synchronized batch normalization is licensed under MIT license, HDF5 generator is licensed under MIT license, and differentiable SimCLR-style augmentations is licensed under MIT license.

Citation

StudioGAN is established for the following research projects. Please cite our work if you use StudioGAN.

@inproceedings{kang2020ContraGAN,
  title   = {{ContraGAN: Contrastive Learning for Conditional Image Generation}},
  author  = {Minguk Kang and Jaesik Park},
  journal = {Conference on Neural Information Processing Systems (NeurIPS)},
  year    = {2020}
}
@inproceedings{kang2021ReACGAN,
  title   = {{Rebooting ACGAN: Auxiliary Classifier GANs with Stable Training}},
  author  = {Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park},
  journal = {Conference on Neural Information Processing Systems (NeurIPS)},
  year    = {2021}
}

[1] Experiments on Tiny ImageNet are conducted using the ResNet architecture instead of CNN.

[2] Our re-implementation of ACGAN (ICML'17) with slight modifications, which bring strong performance enhancement for the experiment using CIFAR10.

[3] Our re-implementation of BigGAN/BigGAN-Deep (ICLR'18) with slight modifications, which bring strong performance enhancement for the experiment using CIFAR10.

[4] IS is computed using Tensorflow official code.

[5] The difference in FID values between the original StyleGAN2 and StudioGAN implementation is caused by the presence of random flip augmentation.