forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
drrg_postprocess.py
325 lines (270 loc) · 11.3 KB
/
drrg_postprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/postprocess/drrg_postprocessor.py
"""
import functools
import operator
import numpy as np
import paddle
from numpy.linalg import norm
import cv2
class Node:
def __init__(self, ind):
self.__ind = ind
self.__links = set()
@property
def ind(self):
return self.__ind
@property
def links(self):
return set(self.__links)
def add_link(self, link_node):
self.__links.add(link_node)
link_node.__links.add(self)
def graph_propagation(edges, scores, text_comps, edge_len_thr=50.):
assert edges.ndim == 2
assert edges.shape[1] == 2
assert edges.shape[0] == scores.shape[0]
assert text_comps.ndim == 2
assert isinstance(edge_len_thr, float)
edges = np.sort(edges, axis=1)
score_dict = {}
for i, edge in enumerate(edges):
if text_comps is not None:
box1 = text_comps[edge[0], :8].reshape(4, 2)
box2 = text_comps[edge[1], :8].reshape(4, 2)
center1 = np.mean(box1, axis=0)
center2 = np.mean(box2, axis=0)
distance = norm(center1 - center2)
if distance > edge_len_thr:
scores[i] = 0
if (edge[0], edge[1]) in score_dict:
score_dict[edge[0], edge[1]] = 0.5 * (
score_dict[edge[0], edge[1]] + scores[i])
else:
score_dict[edge[0], edge[1]] = scores[i]
nodes = np.sort(np.unique(edges.flatten()))
mapping = -1 * np.ones((np.max(nodes) + 1), dtype=np.int32)
mapping[nodes] = np.arange(nodes.shape[0])
order_inds = mapping[edges]
vertices = [Node(node) for node in nodes]
for ind in order_inds:
vertices[ind[0]].add_link(vertices[ind[1]])
return vertices, score_dict
def connected_components(nodes, score_dict, link_thr):
assert isinstance(nodes, list)
assert all([isinstance(node, Node) for node in nodes])
assert isinstance(score_dict, dict)
assert isinstance(link_thr, float)
clusters = []
nodes = set(nodes)
while nodes:
node = nodes.pop()
cluster = {node}
node_queue = [node]
while node_queue:
node = node_queue.pop(0)
neighbors = set([
neighbor for neighbor in node.links if
score_dict[tuple(sorted([node.ind, neighbor.ind]))] >= link_thr
])
neighbors.difference_update(cluster)
nodes.difference_update(neighbors)
cluster.update(neighbors)
node_queue.extend(neighbors)
clusters.append(list(cluster))
return clusters
def clusters2labels(clusters, num_nodes):
assert isinstance(clusters, list)
assert all([isinstance(cluster, list) for cluster in clusters])
assert all(
[isinstance(node, Node) for cluster in clusters for node in cluster])
assert isinstance(num_nodes, int)
node_labels = np.zeros(num_nodes)
for cluster_ind, cluster in enumerate(clusters):
for node in cluster:
node_labels[node.ind] = cluster_ind
return node_labels
def remove_single(text_comps, comp_pred_labels):
assert text_comps.ndim == 2
assert text_comps.shape[0] == comp_pred_labels.shape[0]
single_flags = np.zeros_like(comp_pred_labels)
pred_labels = np.unique(comp_pred_labels)
for label in pred_labels:
current_label_flag = (comp_pred_labels == label)
if np.sum(current_label_flag) == 1:
single_flags[np.where(current_label_flag)[0][0]] = 1
keep_ind = [i for i in range(len(comp_pred_labels)) if not single_flags[i]]
filtered_text_comps = text_comps[keep_ind, :]
filtered_labels = comp_pred_labels[keep_ind]
return filtered_text_comps, filtered_labels
def norm2(point1, point2):
return ((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2)**0.5
def min_connect_path(points):
assert isinstance(points, list)
assert all([isinstance(point, list) for point in points])
assert all([isinstance(coord, int) for point in points for coord in point])
points_queue = points.copy()
shortest_path = []
current_edge = [[], []]
edge_dict0 = {}
edge_dict1 = {}
current_edge[0] = points_queue[0]
current_edge[1] = points_queue[0]
points_queue.remove(points_queue[0])
while points_queue:
for point in points_queue:
length0 = norm2(point, current_edge[0])
edge_dict0[length0] = [point, current_edge[0]]
length1 = norm2(current_edge[1], point)
edge_dict1[length1] = [current_edge[1], point]
key0 = min(edge_dict0.keys())
key1 = min(edge_dict1.keys())
if key0 <= key1:
start = edge_dict0[key0][0]
end = edge_dict0[key0][1]
shortest_path.insert(0, [points.index(start), points.index(end)])
points_queue.remove(start)
current_edge[0] = start
else:
start = edge_dict1[key1][0]
end = edge_dict1[key1][1]
shortest_path.append([points.index(start), points.index(end)])
points_queue.remove(end)
current_edge[1] = end
edge_dict0 = {}
edge_dict1 = {}
shortest_path = functools.reduce(operator.concat, shortest_path)
shortest_path = sorted(set(shortest_path), key=shortest_path.index)
return shortest_path
def in_contour(cont, point):
x, y = point
is_inner = cv2.pointPolygonTest(cont, (int(x), int(y)), False) > 0.5
return is_inner
def fix_corner(top_line, bot_line, start_box, end_box):
assert isinstance(top_line, list)
assert all(isinstance(point, list) for point in top_line)
assert isinstance(bot_line, list)
assert all(isinstance(point, list) for point in bot_line)
assert start_box.shape == end_box.shape == (4, 2)
contour = np.array(top_line + bot_line[::-1])
start_left_mid = (start_box[0] + start_box[3]) / 2
start_right_mid = (start_box[1] + start_box[2]) / 2
end_left_mid = (end_box[0] + end_box[3]) / 2
end_right_mid = (end_box[1] + end_box[2]) / 2
if not in_contour(contour, start_left_mid):
top_line.insert(0, start_box[0].tolist())
bot_line.insert(0, start_box[3].tolist())
elif not in_contour(contour, start_right_mid):
top_line.insert(0, start_box[1].tolist())
bot_line.insert(0, start_box[2].tolist())
if not in_contour(contour, end_left_mid):
top_line.append(end_box[0].tolist())
bot_line.append(end_box[3].tolist())
elif not in_contour(contour, end_right_mid):
top_line.append(end_box[1].tolist())
bot_line.append(end_box[2].tolist())
return top_line, bot_line
def comps2boundaries(text_comps, comp_pred_labels):
assert text_comps.ndim == 2
assert len(text_comps) == len(comp_pred_labels)
boundaries = []
if len(text_comps) < 1:
return boundaries
for cluster_ind in range(0, int(np.max(comp_pred_labels)) + 1):
cluster_comp_inds = np.where(comp_pred_labels == cluster_ind)
text_comp_boxes = text_comps[cluster_comp_inds, :8].reshape(
(-1, 4, 2)).astype(np.int32)
score = np.mean(text_comps[cluster_comp_inds, -1])
if text_comp_boxes.shape[0] < 1:
continue
elif text_comp_boxes.shape[0] > 1:
centers = np.mean(text_comp_boxes, axis=1).astype(np.int32).tolist()
shortest_path = min_connect_path(centers)
text_comp_boxes = text_comp_boxes[shortest_path]
top_line = np.mean(
text_comp_boxes[:, 0:2, :], axis=1).astype(np.int32).tolist()
bot_line = np.mean(
text_comp_boxes[:, 2:4, :], axis=1).astype(np.int32).tolist()
top_line, bot_line = fix_corner(
top_line, bot_line, text_comp_boxes[0], text_comp_boxes[-1])
boundary_points = top_line + bot_line[::-1]
else:
top_line = text_comp_boxes[0, 0:2, :].astype(np.int32).tolist()
bot_line = text_comp_boxes[0, 2:4:-1, :].astype(np.int32).tolist()
boundary_points = top_line + bot_line
boundary = [p for coord in boundary_points for p in coord] + [score]
boundaries.append(boundary)
return boundaries
class DRRGPostprocess(object):
"""Merge text components and construct boundaries of text instances.
Args:
link_thr (float): The edge score threshold.
"""
def __init__(self, link_thr, **kwargs):
assert isinstance(link_thr, float)
self.link_thr = link_thr
def __call__(self, preds, shape_list):
"""
Args:
edges (ndarray): The edge array of shape N * 2, each row is a node
index pair that makes up an edge in graph.
scores (ndarray): The edge score array of shape (N,).
text_comps (ndarray): The text components.
Returns:
List[list[float]]: The predicted boundaries of text instances.
"""
edges, scores, text_comps = preds
if edges is not None:
if isinstance(edges, paddle.Tensor):
edges = edges.numpy()
if isinstance(scores, paddle.Tensor):
scores = scores.numpy()
if isinstance(text_comps, paddle.Tensor):
text_comps = text_comps.numpy()
assert len(edges) == len(scores)
assert text_comps.ndim == 2
assert text_comps.shape[1] == 9
vertices, score_dict = graph_propagation(edges, scores, text_comps)
clusters = connected_components(vertices, score_dict, self.link_thr)
pred_labels = clusters2labels(clusters, text_comps.shape[0])
text_comps, pred_labels = remove_single(text_comps, pred_labels)
boundaries = comps2boundaries(text_comps, pred_labels)
else:
boundaries = []
boundaries, scores = self.resize_boundary(
boundaries, (1 / shape_list[0, 2:]).tolist()[::-1])
boxes_batch = [dict(points=boundaries, scores=scores)]
return boxes_batch
def resize_boundary(self, boundaries, scale_factor):
"""Rescale boundaries via scale_factor.
Args:
boundaries (list[list[float]]): The boundary list. Each boundary
with size 2k+1 with k>=4.
scale_factor(ndarray): The scale factor of size (4,).
Returns:
boundaries (list[list[float]]): The scaled boundaries.
"""
boxes = []
scores = []
for b in boundaries:
sz = len(b)
scores.append(b[-1])
b = (np.array(b[:sz - 1]) *
(np.tile(scale_factor[:2], int(
(sz - 1) / 2)).reshape(1, sz - 1))).flatten().tolist()
boxes.append(np.array(b).reshape([-1, 2]))
return boxes, scores