forked from church89/msre_csg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmsre_source.py
259 lines (231 loc) · 9.72 KB
/
msre_source.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import openmc
import numpy as np
import os
from math import pi, sin, cos
os.system('rm *.xml *.h5')
#Define msre materials
#Fuel salt
salt = openmc.Material()
salt.add_nuclide('Li7', 10.9566, 'wo')
salt.add_element('Be', 6.3492, 'wo')
salt.add_element('Zr', 11.1013, 'wo')
salt.add_element('Hf', 0.0001, 'wo')
salt.add_nuclide('U234', 0.0144, 'wo')
salt.add_nuclide('U235', 1.4093, 'wo')
salt.add_nuclide('U236', 0.0059, 'wo')
salt.add_nuclide('U238', 3.0652, 'wo')
salt.add_element('Fe', 0.0162, 'wo')
salt.add_element('Cr', 0.0028, 'wo')
salt.add_element('Ni', 0.0030, 'wo')
salt.add_element('O', 0.0490, 'wo')
salt.add_element('F', 67.0270, 'wo')
salt.set_density('g/cm3', 2.3223)
#Control rod Gd2O3-Al2O3
Gd2O3 = openmc.Material()
Gd2O3.add_element('Gd',2)
Gd2O3.add_element('O',3)
Gd2O3.set_density('g/cm3',5.873)
Al2O3 = openmc.Material()
Al2O3.add_element('Al',2)
Al2O3.add_element('O',3)
Al2O3.set_density('g/cm3',5.873)
poison = openmc.Material.mix_materials([Gd2O3,Al2O3],[0.7,0.3],'wo')
#inor vessel
inor = openmc.Material()
inor.set_density('g/cm3',8.7745)
inor.add_element('Ni',(66+71)/2,'wo')
inor.add_element('Mo',(15+18)/2,'wo')
inor.add_element('Cr',(6+8)/2,'wo')
inor.add_element('Fe',5,'wo')
inor.add_element('C',(0.04+0.08)/2,'wo')
inor.add_element('Al',0.25,'wo')
inor.add_element('Ti',0.25,'wo')
inor.add_element('S',0.02,'wo')
inor.add_element('Mn',1.0,'wo')
inor.add_element('Si',1.0,'wo')
inor.add_element('Cu',0.35,'wo')
inor.add_element('B',0.010,'wo')
inor.add_element('W',0.5,'wo')
inor.add_element('P',0.015,'wo')
inor.add_element('Co',0.2,'wo')
#helium
helium = openmc.Material()
helium.add_element('He',1)
helium.set_density('g/cm3',0.00001)
#Graphite moderator
graphite = openmc.Material()
graphite.add_element('C',1)
graphite.set_density('g/cm3',1.86)
graphite.add_s_alpha_beta('c_Graphite')
#Water Body detector
water = openmc.Material()
water.add_element('H',2)
water.add_element('O',1)
water.set_density('g/cm3',1)
#Iron shield
fe = openmc.Material()
fe.add_element('Fe',1)
fe.set_density('g/cm3',7.874)
gad = openmc.Material()
gad.add_element('Gd',1)
gad.set_density('g/cm3',7.9)
iron = openmc.Material.mix_materials([fe,gad],[0.99,0.01],'wo')
#Export material
material = openmc.Materials([salt,inor,graphite,poison,helium,water,iron])
#material.cross_sections = "/home/lorenzo/Downloads/endfb80/endfb80_hdf5/cross_sections.xml"
material.export_to_xml()
#Define msre core geometry in cm
core_height = 200
core_radius = 70
fuel_radius = 1.2645 #fuel channel equivalent radius
fuel_channels = 120 #total number of fuel channels
fuel_pattern = 8 # number or channels in the first ring, then it grows linearly
control_rod_radius = 1.27
vessel_thickness = 2
shield_thickness = 10
detector_distance = 30 #body detector distance from reactor external surface
detector_radius = 15 #cylinder equivalent body detector radius
detector_height = 180 #cylinder equivalent body detector height
graveyard_radius = (core_radius + vessel_thickness + shield_thickness + detector_distance + detector_radius)*1.50 #add 50% to outer body
# Define surfaces and cells
z_top_in = openmc.ZPlane(z0=core_height/2)
z_bot_in = openmc.ZPlane(z0=-core_height/2)
z_top_out = openmc.ZPlane(z0=core_height/2+vessel_thickness)
z_bot_out = openmc.ZPlane(z0=-core_height/2-vessel_thickness)
fuel_surf = openmc.ZCylinder(r=fuel_radius)
fuel_cell = openmc.Cell(fill=salt, region = (-fuel_surf & -z_top_in & + z_bot_in))
clad_cell = openmc.Cell(fill=graphite, region = +fuel_surf)
pin_universe = openmc.Universe(cells=(fuel_cell, clad_cell))
pois_surf = openmc.ZCylinder(r=control_rod_radius)
pois_cell = openmc.Cell(fill=poison, region = (-pois_surf & -z_top_in & + z_bot_in))
outer_cell = openmc.Cell(fill=graphite, region = +pois_surf)
pois_universe = openmc.Universe(cells=(pois_cell, outer_cell))
graphite_surf = openmc.ZCylinder(r=core_radius)
graphite_cell = openmc.Cell(fill=graphite, region = (-graphite_surf & -z_top_in & + z_bot_in))
bundle_universe = openmc.Universe(cells=(graphite_cell,))
vessel_inner = openmc.ZCylinder(r=core_radius)
vessel_outer = openmc.ZCylinder(r=core_radius+vessel_thickness,surface_id=998)
shield_outer = openmc.ZCylinder(r=core_radius+vessel_thickness+shield_thickness,surface_id=999)
graveyard_inner = openmc.Sphere (r=graveyard_radius)
graveyard_outer = openmc.Sphere (r=graveyard_radius+5, boundary_type='vacuum')
body_cyl = openmc.ZCylinder(x0=core_radius + vessel_thickness + shield_thickness + detector_distance, y0=0 ,r=detector_radius)
body_top_plane = openmc.ZPlane(z0=detector_height/2)
body_bot_plane = openmc.ZPlane(z0=-detector_height/2)
rings = [i for i in range(int(fuel_channels/fuel_pattern)) if i*(i-1)==2*fuel_channels/fuel_pattern][0] # number of fuel rings
rings_array = np.arange(fuel_pattern,rings*fuel_pattern,fuel_pattern)
dist = (core_radius - fuel_radius*2*rings)/(rings + 1) #distance between fuel channesl
pitch = 2*fuel_radius + dist #fuel pitch
rings_radii = [pitch*(i+1) for i in range(len(rings_array)) ]
for i, (r,n) in enumerate(zip(rings_radii,rings_array)):
for j in range(n):
theta = (j/n*360)*pi/180
x = r*cos(theta)
y = r*sin(theta)
pin_surf = openmc.ZCylinder(x0=x,y0=y,r=fuel_radius)
graphite_cell.region &= + pin_surf
pin = openmc.Cell(fill=pin_universe, region = -pin_surf)
pin.translation = (x, y, 0)
bundle_universe.add_cell(pin)
cr_surf = openmc.ZCylinder(x0=0,y0=0,r=control_rod_radius)
graphite_cell.region &= + cr_surf
cr = openmc.Cell(fill=pois_universe, region = -cr_surf)
bundle_universe.add_cell(cr)
core = openmc.Cell(region = (-vessel_inner & -z_top_in & + z_bot_in))
vessel = openmc.Cell(fill=inor, region = (+ vessel_inner & -vessel_outer & -z_top_in & + z_bot_in))
vessel_top = openmc.Cell(fill=inor, region=(-vessel_outer & +z_top_in & -z_top_out))
vessel_bot = openmc.Cell(fill=inor, region=(-vessel_outer & -z_bot_in & +z_bot_out))
shield = openmc.Cell(fill=iron, region=(-shield_outer & +vessel_outer & -z_top_out & +z_bot_out))
vacuum = openmc.Cell(region = -graveyard_inner & (+shield_outer | +z_top_out | - z_bot_out) & ~(-body_cyl & -body_top_plane & +body_bot_plane))
body = openmc.Cell(fill=water, region=(-body_cyl & -body_top_plane & +body_bot_plane))
graveyard = openmc.Cell(region = (+graveyard_inner & -graveyard_outer))
root_universe = openmc.Universe(cells=[graveyard,vacuum,shield,vessel,vessel_bot,vessel_top,core,body])
geometry = openmc.Geometry(root_universe)
geometry.export_to_xml()
basis = ['xy','xz','yz']
plots = []
for base in basis:
plot = openmc.Plot.from_geometry(geometry)
plot.basis = base
plot.width = (300,300)
plot.pixels = (2000,2000)
plot.color_by = 'material'
plot.colors = {
graphite: 'chocolate',
salt: 'gold',
inor: 'darkgrey',
poison: 'fuchsia',
helium: 'azure',
water: 'blue',
iron: 'limegreen'
}
plots.append(plot)
Plots = openmc.Plots(plots)
Plots.export_to_xml()
openmc.plot_geometry()
#Define settings
settings = openmc.Settings()
settings.batches = 100
settings.inactive = 10
settings.particles = 100000
#source_area = openmc.stats.Box([-core_radius, -core_radius, -core_height],[ core_radius, core_radius, core_height],only_fissionable = True)
#settings.source = openmc.Source(space=source_area)
settings.photon_transport = True
#settings.surf_source_write = {
# "surface_ids": [999],
# "max_particles": 10000
#}
settings.run_mode = 'fixed source'
settings.surf_source_read = {'path': 'source/surface_source.h5'}
settings.export_to_xml()
#Define tallies
tallies = openmc.Tallies()
#Flux Tally
#mesh = openmc.RegularMesh()
#mesh.dimension = [100,100,1]
#mesh.lower_left = [-core_radius,-core_radius,-1]
#mesh.upper_right = [core_radius,core_radius,0]
#mesh_filter = openmc.MeshFilter(mesh)
#flux_Tally = openmc.Tally(name='flux')
#flux_Tally.scores = ['flux','fission']
#flux_Tally.filters = [mesh_filter]
#tallies.append(flux_Tally)
#Heating rate tally, required for calculating source strenght
hr_Tally = openmc.Tally(name="heating")
hr_Tally.scores = ['heating']
tallies.append(hr_Tally)
#Dose rate tally
detector_filter = openmc.CellFilter(body) #ste the equivalent body as detector
particles = ['photon','neutron'] #the only particles we have
for particle in particles:
particle_filter = openmc.ParticleFilter([particle])
energy, dose = openmc.data.dose_coefficients(particle,'AP')
dose_filter = openmc.EnergyFunctionFilter(energy, dose)
dose_Tally = openmc.Tally(name=particle)
dose_Tally.scores = ['flux']
dose_Tally.filters=[particle_filter,dose_filter,detector_filter]
tallies.append(dose_Tally)
tallies.export_to_xml()
model = openmc.model.Model(geometry, material, settings, tallies)
sp_filename = model.run()
#Define post-processing
results = openmc.StatePoint(sp_filename)
# Create log-spaced energy bins from 1 keV to 10 MeV
energy_bins = np.logspace(3,7)
# Calculate pdf for source energies
probability, bin_edges = np.histogram(results.source['E'], energy_bins, density=True)
# Make sure integrating the PDF gives us unity
print(sum(probability*np.diff(energy_bins)))
# Plot source energy PDF
fig, ax = plt.subplots(1, 1, figsize=(6, 6))
ax = plt.semilogx(energy_bins[:-1], probability*np.diff(energy_bins), drawstyle='steps')
plt.xlabel('Energy (eV)')
plt.ylabel('Probability/eV')
plt.savefig("Source_energy_distribution.png",dpi=300)
heating_rate = results.get_tally(name='heating').mean.mean()
body_vol = pi*(detector_radius**2)*detector_height
strength = 100/(1.602*10**(-19) * 72739444.92723805)* 0.12486587784647982
tot_dose = 0
for particle in particles:
tot_dose = results.get_tally(name=particle).mean.mean() #Effective dose in [pSv*cm3/source-particle]
eff_dose = tot_dose/body_vol*strength*(10**(-12))/(10**(-3))*3600 # Effective dose in [mSv/h]
print("Total {} body absorbed effective dose: {} mSv/h".format(particle,eff_dose))