-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathai_seg.py
executable file
·694 lines (422 loc) · 20.3 KB
/
ai_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
'''
Name: ai_seg.py
Version: 1.0
Summary: A machine learning model U2net and opencv based color clustering method hat performs object segmentation in a single shot
Author: Suxing Liu
Author-email: [email protected]
Created: 2024-09-11
USAGE:
Default parameters: python3 ai_seg.py -p /input/ -ft jpg -o /output/
PARAMETERS:
("-p", "--path", dest = "path", type = str, required = True, help = "path to image file")
("-ft", "--filetype", dest = "filetype", type = str, required = False, default='jpg,png', help = "Image filetype")
("-o", "--output_path", dest = "output_path", type = str, required = False, help = "result path")
('-pl', '--parallel', dest = "parallel", type = int, required = False, default = 0, help = 'Whether using parallel processing or loop processing, 0: Loop, 1: Parallel')
INPUT:
Image file in jpg, png format
OUTPUT:
Segmentation results in masked foreground image
'''
# import the necessary packages
import os
import glob
import shutil
import pathlib
from pathlib import Path
import numpy as np
import argparse
import cv2
import imutils
import openpyxl
from sklearn.cluster import KMeans
from rembg import remove
import time
MBFACTOR = float(1<<20)
# generate folder to store the output results
def mkdir(path):
# remove space at the beginning
path=path.strip()
# remove slash at the end
path=path.rstrip("\\")
# path exist? # True # False
isExists=os.path.exists(path)
# process
if not isExists:
# construct the path and folder
#print path + ' folder constructed!'
# make dir
os.makedirs(path)
return True
else:
# if exists, return
shutil.rmtree(path)
os.makedirs(path)
print ("{} path exists!\n".format(path))
return False
# Detect markers in the image
def marker_detect(img_rgb):
# get the dimension of the image
img_height, img_width, img_channels = img_rgb.shape
# convert the input image to a grayscale
if img_channels > 2:
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
else:
img_gray = orig
(ret, thresh) = cv2.threshold(img_gray, 50, 255, 0)
# Find the contours in the image using cv2.findContours() function.
contours,hierarchy = cv2.findContours(thresh, 1, 2)
print("Number of contours detected:", len(contours))
i = 0
# initialize square width
width_rec = []
img_overlay = img_rgb
# list for storing names of shapes
for cnt in contours:
# here we are ignoring first counter because
# findcontour function detects whole image as shape
if i == 0:
i = 1
continue
x1,y1 = cnt[0][0]
# cv2.approxPloyDP() function to approximate the shape
approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
if len(approx) == 4:
(x, y, w, h) = cv2.boundingRect(cnt)
# compute the center of the contour
M = cv2.moments(cnt)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
else:
# set values as what you need in the situation
cX, cY = 0, 0
ratio = float(w)/h
if (cX < img_width*0.3 or cX > img_width*0.6) and (cY > img_width*0.3 or cY < img_width*0.6):
# define threshold for the dimension of square
if min(w,h) > 80 and max(w,h) < 300:
if ratio >= 0.7 and ratio <= 1.2:
img_overlay = cv2.drawContours(img_rgb, [cnt], -1, (0,255,255), 5)
width_rec.append((w+h)*0.5)
# compute the average of detected square dimension in pixels
if len(width_rec) > 0:
avg_width = np.mean(width_rec)
pixel_cm_ratio = avg_width/2.5
else:
avg_width = 0
pixel_cm_ratio = 0
return img_overlay, avg_width, pixel_cm_ratio
# segment foreground object using color clustering method
def color_cluster_seg(image, args_colorspace, args_channels, args_num_clusters):
#image_LAB = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
#cl = ColorLabeler()
# Change image color space, if necessary.
colorSpace = args_colorspace.lower()
if colorSpace == 'hsv':
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
elif colorSpace == 'ycrcb' or colorSpace == 'ycc':
image = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)
elif colorSpace == 'lab':
image = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
else:
colorSpace = 'bgr' # set for file naming purposes
# Keep only the selected channels for K-means clustering.
if args_channels != 'all':
channels = cv2.split(image)
channelIndices = []
for char in args_channels:
channelIndices.append(int(char))
image = image[:,:,channelIndices]
if len(image.shape) == 2:
image.reshape(image.shape[0], image.shape[1], 1)
(height, width, n_channel) = image.shape
if n_channel > 1:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# Flatten the 2D image array into an MxN feature vector, where M is the number of pixels and N is the dimension (number of channels).
reshaped = image.reshape(image.shape[0] * image.shape[1], image.shape[2])
# Perform K-means clustering.
if args_num_clusters < 2:
print('Warning: num-clusters < 2 invalid. Using num-clusters = 2')
# define number of cluster, at lease 2 cluster including background
numClusters = max(2, args_num_clusters)
# clustering method
kmeans = KMeans(n_clusters = numClusters, n_init = 40, max_iter = 500).fit(reshaped)
# get lables
pred_label = kmeans.labels_
# Reshape result back into a 2D array, where each element represents the corresponding pixel's cluster index (0 to K - 1).
clustering = np.reshape(np.array(pred_label, dtype=np.uint8), (image.shape[0], image.shape[1]))
# Sort the cluster labels in order of the frequency with which they occur.
sortedLabels = sorted([n for n in range(numClusters)],key = lambda x: -np.sum(clustering == x))
# Initialize K-means grayscale image; set pixel colors based on clustering.
kmeansImage = np.zeros(image.shape[:2], dtype=np.uint8)
for i, label in enumerate(sortedLabels):
kmeansImage[clustering == label] = int(255 / (numClusters - 1)) * i
(ret, thresh) = cv2.threshold(kmeansImage,0,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)
'''
if np.count_nonzero(thresh) > 0:
thresh_cleaned = clear_border(thresh)
else:
thresh_cleaned = thresh
'''
#thresh_cleaned = thresh
img_thresh = thresh
'''
(numLabels, labels, stats, centroids) = cv2.connectedComponentsWithStats(thresh_cleaned, connectivity = 8)
# stats[0], centroids[0] are for the background label. ignore
# cv2.CC_STAT_LEFT, cv2.CC_STAT_TOP, cv2.CC_STAT_WIDTH, cv2.CC_STAT_HEIGHT
# extract the connected component statistics for the current label
sizes = stats[1:, cv2.CC_STAT_AREA]
Coord_left = stats[1:, cv2.CC_STAT_LEFT]
Coord_top = stats[1:, cv2.CC_STAT_TOP]
Coord_width = stats[1:, cv2.CC_STAT_WIDTH]
Coord_height = stats[1:, cv2.CC_STAT_HEIGHT]
Coord_centroids = np.delete(centroids,(0), axis=0)
#print("Coord_centroids {}\n".format(centroids[1][1]))
#print("[width, height] {} {}\n".format(width, height))
numLabels = numLabels - 1
'''
################################################################################################
'''
min_size = 100
max_size = min(width*height, args_max_size)
# initialize an output mask
mask = np.zeros(gray.shape, dtype="uint8")
# loop over the number of unique connected component labels, skipping
# over the first label (as label zero is the background)
for i in range(1, numLabels):
# extract the connected component statistics for the current label
x = stats[i, cv2.CC_STAT_LEFT]
y = stats[i, cv2.CC_STAT_TOP]
w = stats[i, cv2.CC_STAT_WIDTH]
h = stats[i, cv2.CC_STAT_HEIGHT]
area = stats[i, cv2.CC_STAT_AREA]
# ensure the width, height, and area are all neither too small
# nor too big
keepWidth = w > 0 and w < 6000
keepHeight = h > 0 and h < 4000
keepArea = area > min_size and area < max_size
#if all((keepWidth, keepHeight, keepArea)):
# ensure the connected component we are examining passes all three tests
#if all((keepWidth, keepHeight, keepArea)):
if keepArea:
# construct a mask for the current connected component and
# then take the bitwise OR with the mask
print("[INFO] keeping connected component '{}'".format(i))
componentMask = (labels == i).astype("uint8") * 255
mask = cv2.bitwise_or(mask, componentMask)
img_thresh = mask
'''
###################################################################################################
'''
size_kernel = 5
#if mask contains mutiple non-connected parts, combine them into one.
(contours, hier) = cv2.findContours(img_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) > 1:
print("mask contains mutiple non-connected parts, combine them into one\n")
kernel = np.ones((size_kernel,size_kernel), np.uint8)
dilation = cv2.dilate(img_thresh.copy(), kernel, iterations = 1)
closing = cv2.morphologyEx(dilation, cv2.MORPH_CLOSE, kernel)
img_thresh = closing
'''
return img_thresh
# compute all the traits
def u2net_seg(image_file):
################################################################################
# load image data
if args['filetype'] == 'jpg' or args['filetype']:
image = cv2.imread(image_file)
else:
print("Image foramt was not support for now\n")
sys.exit(0)
################################################################################
# Check loaded image
if image is not None:
# backup image
orig = image.copy()
# get the dimension of the image
img_height, img_width, img_channels = orig.shape
# get image file information
file_size = int(os.path.getsize(image_file)/MBFACTOR)
print("Image file size: {} MB, dimension: {} X {}, channels : {}\n".format(str(file_size), img_height, img_width, img_channels))
# marker_detect(image)
(img_overlay, avg_width, pixel_cm_ratio) = marker_detect(image.copy())
######################################################################################
# PhotoRoom Remove Background API
# AI pre-trained model to segment plant object, return mask
thresh_seg = remove(orig, only_mask = True).copy()
#####################################################################################
# find the largest contour in the threshold image
cnts = cv2.findContours(thresh_seg.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
c = max(cnts, key=cv2.contourArea)
blank_image = np.zeros(thresh_seg.shape, np.uint8)
#cleaned_thresh = cv2.fillPoly(blank_image, pts = c, color = (255, 255, 255))
cleaned_thresh = cv2.drawContours(blank_image, [c], -1, (255, 255, 255), cv2.FILLED)
#cleaned_thresh = thresh_seg
# use mask to generate segmentation object
masked_rgb_seg = cv2.bitwise_and(orig, orig, mask = cleaned_thresh)
##############################################################################################
n_cluster = 2
args_channels = '0'
args_colorspace = 'lab'
thresh_cluster = color_cluster_seg(masked_rgb_seg, args_colorspace, args_channels, n_cluster)
#thresh_cluster = cv2.threshold(thresh_cluster, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
masked_rgb_seg = cv2.bitwise_and(masked_rgb_seg, masked_rgb_seg, mask = thresh_cluster)
#result_img_path = result_path + 'masked_rgb_seg.png'
#cv2.imwrite(result_img_path, masked_rgb_seg)
#result_img_path = result_path + 'thresh_seg.png'
#cv2.imwrite(result_img_path, thresh_seg)
#result_img_path = result_path + 'thresh.png'
#cv2.imwrite(result_img_path, thresh)
#masked_rgb_seg = cv2.drawContours(masked_rgb_seg, [c], -1, (0, 255, 0), 3)
return cleaned_thresh, masked_rgb_seg, img_overlay, avg_width, pixel_cm_ratio
# get file information from the file path using python3
def get_file_info(file_full_path):
p = pathlib.Path(file_full_path)
filename = p.name
basename = p.stem
file_path = p.parent.absolute()
file_path = os.path.join(file_path, '')
return file_path, filename, basename
# save result files
def write_image_output(imagearray, result_path, base_name, addition, ext):
# save segmentation result
result_file = (result_path + base_name + addition + ext)
#print(result_file)
cv2.imwrite(result_file, imagearray)
# check saved file
if os.path.exists(result_file):
print("Result file was saved at {0}\n".format(result_file))
else:
print("Result file writing failed!\n")
# save results as excel file
def write_excel_output(trait_file, trait_sum):
if os.path.isfile(trait_file):
# update values
#Open an xlsx for reading
wb = openpyxl.load_workbook(trait_file)
#Get the current Active Sheet
sheet = wb.active
sheet.delete_rows(2, sheet.max_row+1) # for entire sheet
else:
# Keep presets
wb = openpyxl.Workbook()
sheet = wb.active
sheet.cell(row = 1, column = 1).value = 'filename'
sheet.cell(row = 1, column = 2).value = 'avg_width'
sheet.cell(row = 1, column = 3).value = 'pixel_cm_ratio'
for row in trait_sum:
sheet.append(row)
#save the csv file
wb.save(trait_file)
if os.path.exists(trait_file):
print("Result file was saved at {}\n".format(trait_file))
else:
print("Error in saving Result file\n")
# for Parallel processing
def batch_process(image_file):
(file_path, filename, basename) = get_file_info(image_file)
print("Segment foreground object for image file {} ...\n".format(file_path, filename, basename))
# main pipeline to perform the segmentation based on u2net and color clustering
(thresh, masked_rgb) = u2net_seg(image_file)
# save mask result image as png format
# write_image_output(thresh, result_path, basename, '_mask.', 'png')
# save masked result image as png format
write_image_output(masked_rgb, result_path, basename, '_masked.', 'png')
if __name__ == '__main__':
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--path", dest = "path", type = str, required = True, help = "path to image file")
ap.add_argument("-ft", "--filetype", dest = "filetype", type = str, required = False, default='jpg,png', help = "Image filetype")
ap.add_argument("-o", "--output_path", dest = "output_path", type = str, required = False, help = "result path")
ap.add_argument('-min', '--min_size', dest = "min_size", type = int, required = False, default = 1600, help = 'min size of object to be segmented.')
ap.add_argument('-max', '--max_size', dest = "max_size", type = int, required = False, default = 1000000, help = 'max size of object to be segmented.')
args = vars(ap.parse_args())
# setup input and output file paths
file_path = args["path"]
ext = args['filetype']
#accquire image file list
filetype = '*.' + ext
image_file_path = file_path + filetype
#accquire image file list
imgList = sorted(glob.glob(image_file_path))
# result path
mkpath = os.path.dirname(file_path) +'/segmentation'
mkdir(mkpath)
seg_path = mkpath + '/'
# result file path
result_path = args["output_path"] if args["output_path"] is not None else seg_path
result_path = os.path.join(result_path, '')
# print out result path
print("results_folder: {}\n".format(result_path))
'''
#########################################################################
# scan the folder to remove the 0 size image
for image_id, image_file in enumerate(imgList):
try:
image = Image.open(image_file)
except PIL.UnidentifiedImageError as e:
print(f"Error in file {image_file}: {e}")
os.remove(image_file)
print(f"Removed file {image_file}")
'''
############################################################################
#accquire image file list after remove error images
imgList = sorted(glob.glob(image_file_path))
########################################################################
# parameters
args_min_size = args['min_size']
args_max_size = args['max_size']
'''
if args_parallel == 1:
# Parallel processing
#################################################################################
import psutil
from multiprocessing import Pool
from contextlib import closing
# parallel processing
# get cpu number for parallel processing
agents = psutil.cpu_count() - 2
print("Using {0} cores to perform parallel processing... \n".format(int(agents)))
# Create a pool of processes. By default, one is created for each CPU in the machine.
with closing(Pool(processes=agents)) as pool:
result = pool.map(batch_process, imgList)
pool.terminate()
else:
'''
#########################################################################
# analysis pipeline
# loop execute
'''
# marker result path
mkpath = os.path.dirname(file_path) +'/cropped'
mkdir(mkpath)
marker_path = mkpath + '/'
'''
# save result as an excel file
ratio_sum = []
for image_id, image_file in enumerate(imgList):
# store iteration start timestamp
start = time.time()
(file_path, filename, basename) = get_file_info(image_file)
print("Plant object segmentation using u2net model for image {} ... \n".format(file_path))
# main pipeline to perform the segmentation based on u2net and color clustering
(cleaned_thresh, masked_rgb_seg, img_overlay, avg_width, pixel_cm_ratio) = u2net_seg(image_file)
# save masked result image as png format
write_image_output(masked_rgb_seg, result_path, basename, '_masked.', ext)
# store iteration end timestamp
end = time.time()
# show time of execution per iteration
#print(f"Segmentation finished for: {filename}\tTime taken: {(end - start) * 10 ** 3:.03f}s !\n")
print("Segmentation finished for: {} in --- {} seconds ---\n".format(filename, (end - start)))
ratio_sum.append([filename, avg_width, pixel_cm_ratio])
'''
################################################################
# save marker detection results
result_file = (marker_path + basename + '_md.' + ext)
print("Saving file '{} '...\n".format(result_file))
cv2.imwrite(result_file, img_overlay)
################################################################
'''
ratio_sum_file = (result_path + 'unit.xlsx')
write_excel_output(ratio_sum_file, ratio_sum)