forked from sevimcengiz/Oryx-MRSI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMask_FOV_run_Pinfo.m
209 lines (162 loc) · 6.13 KB
/
Mask_FOV_run_Pinfo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
%% This function is written to create binary mask volumes of FOV with the same dimensions of the reference anatomical image volume.
% Author: Sevim Cengiz, Sevim Cengiz, Bogazici University, 2020
% Contact: [email protected]
% It considers chemical shift correction, if chemical shift correction
% button is on. Also, it creates 9 different binary masks of metabolites considering chemical shift amount.
% Credits: This function is modified from GannetMask_Philips.m. Link: https://github.com/richardedden/Gannet3.1
% Reference: Edden RAE, Puts NAJ, Harris AD, Barker PB, Evans CJ. Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra. J. Magn. Reson. Imaging 2014;40:1445–1452. doi: 10.1002/jmri.24478)
% Inputs: Pinfo struct, metabolite number (k), FOV box mask file path,
% chemical shift ex, eco and echo2 values, RFOV direction.
% Outputs: Pinfo struct.
% All output files will be saved under ~spectra/nifti/coreg_binary_mask
% folder as nifti files.
function [Pinfo] = Mask_FOV_run_Pinfo(Pinfo,MRIFOVMask_file,RFOV_dir)
nii=Pinfo.MRI;
[pathnii,namenii,extnii] = fileparts(nii);
gunzip(nii,pathnii);
nii_file=[pathnii,filesep,namenii];
V=spm_vol(nii_file);
[MRI,XYZ]=spm_read_vols(V);
[~,voxdim] = spm_get_bbox(V,'fv');
voxdim = abs(voxdim)';
halfpixshift = -voxdim(1:3)/2;
%Shift imaging voxel coordinates by half an imaging voxel so that the XYZ matrix
%tells us the x,y,z coordinates of the MIDDLE of that imaging voxel.
% halfpixshift = -H.dime.pixdim(1:3).'/2; %Eski kod
halfpixshift(3) = -halfpixshift(3);
XYZ=XYZ+repmat(halfpixshift,[1 size(XYZ,2)]);
% get information from SPAR - change later to be read in
%
ap_size = Pinfo.FOV;%MRS_struct.p.voxsize(ii, 2);
lr_size = Pinfo.FOV;%MRS_struct.p.voxsize(ii, 1);
cc_size = Pinfo.slithickness;%MRS_struct.p.voxsize(ii, 3);
switch RFOV_dir
case 'RL'
ap_off =Pinfo.voxoffap;
lr_off = Pinfo.voxofflr;
cc_off = Pinfo.voxoffcc;
otherwise % AP
ap_off =Pinfo.voxoffap;
lr_off = Pinfo.voxofflr;
cc_off = Pinfo.voxoffcc;
end
ap_ang = Pinfo.voxangap;
lr_ang = Pinfo.voxanglr;
cc_ang = Pinfo.voxangcc;
%
%
%We need to flip ap and lr axes to match NIFTI convention
ap_off = -ap_off;
lr_off = -lr_off;
ap_ang = -ap_ang;
lr_ang = -lr_ang;
% define the voxel - use x y z
% currently have spar convention that have in AUD voxel - will need to
% check for everything in future...
% x - left = positive
% y - posterior = postive
% z - superior = positive
vox_ctr = ...
[lr_size/2 -ap_size/2 cc_size/2 ;
-lr_size/2 -ap_size/2 cc_size/2 ;
-lr_size/2 ap_size/2 cc_size/2 ;
lr_size/2 ap_size/2 cc_size/2 ;
-lr_size/2 ap_size/2 -cc_size/2 ;
lr_size/2 ap_size/2 -cc_size/2 ;
lr_size/2 -ap_size/2 -cc_size/2 ;
-lr_size/2 -ap_size/2 -cc_size/2 ];
% make rotations on voxel
rad = pi/180;
initrot = zeros(3,3);
xrot = initrot;
xrot(1,1) = 1;
xrot(2,2) = cos(lr_ang *rad);
xrot(2,3) =-sin(lr_ang*rad);
xrot(3,2) = sin(lr_ang*rad);
xrot(3,3) = cos(lr_ang*rad);
yrot = initrot;
yrot(1,1) = cos(ap_ang*rad);
yrot(1,3) = sin(ap_ang*rad);
yrot(2,2) = 1;
yrot(3,1) = -sin(ap_ang*rad);
yrot(3,3) = cos(ap_ang*rad);
zrot = initrot;
zrot(1,1) = cos(cc_ang*rad);
zrot(1,2) = -sin(cc_ang*rad);
zrot(2,1) = sin(cc_ang*rad);
zrot(2,2) = cos(cc_ang*rad);
zrot(3,3) = 1;
% rotate voxel
vox_rot = xrot*yrot*zrot*vox_ctr.';
% calculate corner coordinates relative to xyz origin
vox_ctr_coor = [lr_off ap_off cc_off];
vox_ctr_coor = repmat(vox_ctr_coor.', [1,8]);
vox_corner = vox_rot+vox_ctr_coor;
mask = zeros(1,size(XYZ,2));
sphere_radius = sqrt((lr_size/2)^2+(ap_size/2)^2+(cc_size/2)^2);
distance2voxctr=sqrt(sum((XYZ-repmat([lr_off ap_off cc_off].',[1 size(XYZ, 2)])).^2,1));
sphere_mask(distance2voxctr<=sphere_radius)=1;
mask(sphere_mask==1) = 1;
XYZ_sphere = XYZ(:,sphere_mask == 1);
tri = delaunayn([vox_corner.'; [lr_off ap_off cc_off]]);
tn = tsearchn([vox_corner.'; [lr_off ap_off cc_off]], tri, XYZ_sphere.');
isinside = ~isnan(tn);
mask(sphere_mask==1) = isinside;
mask = reshape(mask, V.dim);
V_mask.fname=[MRIFOVMask_file];
V_mask.descrip='MRS_Voxel_Mask';
V_mask.dim=V.dim;
V_mask.dt=V.dt;
V_mask.mat=V.mat;
V_mask=spm_write_vol(V_mask,mask);
%%%%New Figureee
% MRIimg= MRI/max(MRI(:));
MRIimg=zeros(size(MRI));
MRIimg_mas = MRIimg + .2*mask;
% construct output
%
voxel_ctr = [-lr_off -ap_off cc_off];
voxel_ctr(1:2)=-voxel_ctr(1:2);
voxel_search=(XYZ(:,:)-repmat(voxel_ctr.',[1 size(XYZ,2)])).^2;
voxel_search=sqrt(sum(voxel_search,1));
[min2,index1]=min(voxel_search);
[slice(1) slice(2) slice(3)]=ind2sub( V.dim,index1);
size_max=max(size(MRIimg_mas));
three_plane_img=zeros([size_max 3*size_max]);
im1 = squeeze(MRIimg_mas(:,:,slice(3)));
im1 = im1(end:-1:1,:)';
im1 = flipdim(im1 ,1);
im1 = flipdim(im1,2);
im3 = squeeze(MRIimg_mas(:,slice(2),:));
im3 = im3(end:-1:1,end:-1:1)';
im3 = flipdim(im3,2);
im2 = squeeze(MRIimg_mas(slice(1),:,:));
im2 = im2(:,end:-1:1)';
three_plane_img(:,1:size_max) = image_center(im1, size_max);
three_plane_img(:,size_max*2+(1:size_max))=image_center(im3,size_max);
three_plane_img(:,size_max+(1:size_max))=image_center(im2,size_max);
%k=9
%Pinfo.FOVimg(k).fig=three_plane_img; %Fov Mask Save
%Pinfo.FOVimg(k).fig=three_plane_img; %Fov Mask Save
%Pinfo.MRIFOVMask(k).name=MRIFOVMask_file; %Fov Mask name save
% if k==9
%
% MRIimg2= MRI/max(MRI(:));
% MRIimg22 = MRIimg2 + .2*MRIimg2;
% three_plane_img2=zeros(size(three_plane_img));
% im11 = squeeze(MRIimg22(:,:,slice(3)));
% im11 = im11(end:-1:1,:)';
% im11 = flipdim(im11 ,1); %vertical mirror (Now; up is Anterior, down is Posterior)
% im11 = flipdim(im11,2); %horizantal mirror (Now: right left display)
% im33 = squeeze(MRIimg22(:,slice(2),:));
% im33 = im33(end:-1:1,end:-1:1)';
% im33 = flipdim(im33,2); %horizantal mirror (Now: right left display)
% im22 = squeeze(MRIimg22(slice(1),:,:));
% im22 = im22(:,end:-1:1)';
% Pinfo.refimg.slice=slice;
% three_plane_img2(:,1:size_max) = image_center(im11, size_max);
% three_plane_img2(:,size_max*2+(1:size_max))=image_center(im33,size_max);
% three_plane_img2(:,size_max+(1:size_max))=image_center(im22,size_max);
% Pinfo.refimg.fig=three_plane_img2; %Ref MRI image save
%end
end