-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_builder.py
183 lines (140 loc) · 6.15 KB
/
model_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torchvision.models as models
from efficientnet_pytorch import EfficientNet
import torch
import torch.nn as nn
class Identity(nn.Module):
"""Identity network
This network is used to convert last layer of pre-trained network to the identity if feature_extractor flag is set.
Args:
nn ([type]): [description]
"""
def __init__(self,features):
super(Identity, self).__init__()
self.feat=features
def forward(self,y):
return y
class classifier(nn.Module):
def __init__(self,in_features,out_features):
super(classifier, self).__init__()
self.cls1=nn.Linear(in_features=in_features, out_features=in_features//2, bias=True),
self.act=nn.ReLU(),
self.drop=nn.Dropout(p=0.5, inplace=False),
self.cls2=nn.Linear(in_features=in_features//2, out_features=in_features//4, bias=True),
self.cls3=nn.Linear(in_features=(in_features//4)+5, out_features=out_features, bias=True)
def forward(self, x ,features):
x=self.cls1(x)
x=self.act(x)
x=self.drop(x)
x=self.cls2(x)
x=self.act(x)
x=self.drop(x)
x=self.cls3(torch.cat((x,features),dim=1))
return x
class build_models():
def __init__(self,model_name, out_classes, pretrained, requires_grad, in_channels,custom_pretrained=None,feature_extractor:bool=False):
"""Inıtilizing the class
Args:
model_name (str): One of the name of pretrained classifiers on pytorch
out_classes (int): Number of classes
pretrained (bool): Pretraining flag
requires_grad (bool): Flag to freeze the weights
in_channels (int): Number of input channels
custom_pretrained (str, optional): Defaults to None.
feature_extractor (bool, optional): Defaults to False.
"""
self.model_name = model_name
self.out_classes = out_classes
self.pretrained = pretrained
self.requires_grad = requires_grad
self.in_channels = in_channels
self.custom_pretrained = custom_pretrained
self.feature_extractor = feature_extractor
def build_densenet(self):
"""Generates densenet according the parameters initiliazed
Returns:
torch.model: Densenet model
"""
model = eval(f'models.{self.model_name}(pretrained={self.pretrained})')
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, self.out_classes)
model.features.conv0.in_channels = self.in_channels
if self.in_channels==1:
model.features.conv0.weight = torch.nn.Parameter(
torch.mean(model.features.conv0.weight, dim=1).unsqueeze(1))
for param in model.parameters():
param.requires_grad = self.requires_grad
if self.custom_pretrained is not None:
model.load_state_dict(torch.load(self.custom_pretrained))
if self.feature_extractor:
identity = Identity(model.classifier.in_features)
model.classifier=self.Identity
return model
else:
return model
def build_resnet(self):
"""Generates resnet according the parameters initiliazed
Returns:
torch.model: resnet model
"""
model = eval(f'models.{self.model_name}(pretrained={self.pretrained})')
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, self.out_classes)
model.conv1.in_channels = self.in_channels
if self.in_channels==1:
model.conv1.weight = torch.nn.Parameter(
torch.mean(model.conv1.weight, dim=1).unsqueeze(1))
for param in model.parameters():
param.requires_grad = self.requires_grad
if self.custom_pretrained is not None:
model.load_state_dict(torch.load(self.custom_pretrained))
if self.feature_extractor:
identity = Identity(model.fc.in_features)
model.fc=identity
return model
else:
return model
def build_efficientnet(self):
"""Generates efficientnet according the parameters initiliazed
Returns:
torch.model: efficientnet model
"""
if self.pretrained:
model = EfficientNet.from_pretrained(self.model_name, num_classes=self.out_classes)
else:
model = EfficientNet.from_name(self.model_name, num_classes=self.out_classes)
model._conv_stem.in_channels = self.in_channels
if self.in_channels==1:
model._conv_stem.weight = torch.nn.Parameter(
torch.mean(model._conv_stem.weight, dim=1).unsqueeze(1))
for param in model.parameters():
param.requires_grad = self.requires_grad
if self.feature_extractor:
identity = Identity(model._fc.in_features)
model._fc=identity
return model
if self.custom_pretrained is not None:
model.load_state_dict(torch.load(self.custom_pretrained))
return model
def build_vgg(self):
"""Builds vgg according the parameters initiliazed
Returns:
torch.model: vgg model
"""
model = eval(f'models.{self.model_name}(pretrained={self.pretrained})')
num_ftrs = model.classifier[-1].in_features
model.classifier[6].out_features = self.out_classes
model.classifier[-1] = nn.Linear(num_ftrs, self.out_classes)
model.features[0].in_channels = self.in_channels
if self.in_channels==1:
model.features[0].weight = torch.nn.Parameter(
torch.mean(model.features[0].weight, dim=1).unsqueeze(1))
for param in model.parameters():
param.requires_grad = self.requires_grad
if self.custom_pretrained is not None:
model.load_state_dict(torch.load(self.custom_pretrained))
if self.feature_extractor:
identity = Identity(model.classifier[0].in_features)
model.classifier=identity
return model
else:
return model