forked from r9y9/deepvoice3_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgentle_web_align.py
153 lines (137 loc) · 6.02 KB
/
gentle_web_align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# -*- coding: utf-8 -*-
"""
Created on Sat Apr 21 09:06:37 2018
Phoneme alignment and conversion in HTK-style label file using Web-served Gentle
This works on any type of english dataset.
Unlike prepare_htk_alignments_vctk.py, this is Python3 and Windows(with Docker) compatible.
Preliminary results show that gentle has better performance with noisy dataset
(e.g. movie extracted audioclips)
*This work was derived from vctk_preprocess/prepare_htk_alignments_vctk.py
@author: engiecat(github)
usage:
gentle_web_align.py (-w wav_pattern) (-t text_pattern) [options]
gentle_web_align.py (--nested-directories=<main_directory>) [options]
options:
-w <wav_pattern> --wav_pattern=<wav_pattern> Pattern of wav files to be aligned
-t <txt_pattern> --txt_pattern=<txt_pattern> Pattern of txt transcript files to be aligned (same name required)
--nested-directories=<main_directory> Process every wav/txt file in the subfolders of the given folder
--server_addr=<server_addr> Server address that serves gentle. [default: localhost]
--port=<port> Server port that serves gentle. [default: 8567]
--max_unalign=<max_unalign> Maximum threshold for unalignment occurence (0.0 ~ 1.0) [default: 0.3]
--skip-already-done Skips if there are preexisting .lab file
-h --help show this help message and exit
"""
from docopt import docopt
from glob import glob
from tqdm import tqdm
import os.path
import requests
import numpy as np
def write_hts_label(labels, lab_path):
lab = ""
for s, e, l in labels:
s, e = float(s) * 1e7, float(e) * 1e7
s, e = int(s), int(e)
lab += "{} {} {}\n".format(s, e, l)
print(lab)
with open(lab_path, "w", encoding='utf-8') as f:
f.write(lab)
def json2hts(data):
emit_bos = False
emit_eos = False
phone_start = 0
phone_end = None
labels = []
failure_count = 0
for word in data["words"]:
case = word["case"]
if case != "success":
failure_count += 1 # instead of failing everything,
#raise RuntimeError("Alignment failed")
continue
start = float(word["start"])
word_end = float(word["end"])
if not emit_bos:
labels.append((phone_start, start, "silB"))
emit_bos = True
phone_start = start
phone_end = None
for phone in word["phones"]:
ph = str(phone["phone"][:-2])
duration = float(phone["duration"])
phone_end = phone_start + duration
labels.append((phone_start, phone_end, ph))
phone_start += duration
assert np.allclose(phone_end, word_end)
if not emit_eos:
labels.append((phone_start, phone_end, "silE"))
emit_eos = True
unalign_ratio = float(failure_count) / len(data['words'])
return unalign_ratio, labels
def gentle_request(wav_path,txt_path, server_addr, port, debug=False):
print('\n')
response = None
wav_name = os.path.basename(wav_path)
txt_name = os.path.basename(txt_path)
if os.path.splitext(wav_name)[0] != os.path.splitext(txt_name)[0]:
print(' [!] wav name and transcript name does not match - exiting...')
return response
with open(txt_path, 'r', encoding='utf-8-sig') as txt_file:
print('Transcript - '+''.join(txt_file.readlines()))
with open(wav_path,'rb') as wav_file, open(txt_path, 'rb') as txt_file:
params = (('async','false'),)
files={'audio':(wav_name,wav_file),
'transcript':(txt_name,txt_file),
}
server_path = 'http://'+server_addr+':'+str(port)+'/transcriptions'
response = requests.post(server_path, params=params,files=files)
if response.status_code != 200:
print(' [!] External server({}) returned bad response({})'.format(server_path, response.status_code))
if debug:
print('Response')
print(response.json())
return response
if __name__ == '__main__':
arguments = docopt(__doc__)
server_addr = arguments['--server_addr']
port = int(arguments['--port'])
max_unalign = float(arguments['--max_unalign'])
if arguments['--nested-directories'] is None:
wav_paths = sorted(glob(arguments['--wav_pattern']))
txt_paths = sorted(glob(arguments['--txt_pattern']))
else:
# if this is multi-foldered environment
# (e.g. DATASET/speaker1/blahblah.wav)
wav_paths=[]
txt_paths=[]
topdir = arguments['--nested-directories']
subdirs = [f for f in os.listdir(topdir) if os.path.isdir(os.path.join(topdir, f))]
for subdir in subdirs:
wav_pattern_subdir = os.path.join(topdir, subdir, '*.wav')
txt_pattern_subdir = os.path.join(topdir, subdir, '*.txt')
wav_paths.extend(sorted(glob(wav_pattern_subdir)))
txt_paths.extend(sorted(glob(txt_pattern_subdir)))
t = tqdm(range(len(wav_paths)))
for idx in t:
try:
t.set_description("Align via Gentle")
wav_path = wav_paths[idx]
txt_path = txt_paths[idx]
lab_path = os.path.splitext(wav_path)[0]+'.lab'
if os.path.exists(lab_path) and arguments['--skip-already-done']:
print('[!] skipping because of pre-existing .lab file - {}'.format(lab_path))
continue
res=gentle_request(wav_path,txt_path, server_addr, port)
unalign_ratio, lab = json2hts(res.json())
print('[*] Unaligned Ratio - {}'.format(unalign_ratio))
if unalign_ratio > max_unalign:
print('[!] skipping this due to bad alignment')
continue
write_hts_label(lab, lab_path)
except:
# if sth happens, skip it
import traceback
tb = traceback.format_exc()
print('[!] ERROR while processing {}'.format(wav_paths[idx]))
print('[!] StackTrace - ')
print(tb)