-
Notifications
You must be signed in to change notification settings - Fork 163
/
Copy pathM4.js
565 lines (536 loc) · 16.8 KB
/
M4.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/*
* Copyright 2021 GFXFundamentals.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of GFXFundamentals. nor the names of his
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
class M4
{
constructor()
{
this.MatType = Float32Array;
}
/**
* Makes an identity matrix.
* @param [dst] optional matrix to store result
* @return dst or a new matrix if none provided
* @memberOf module:webgl-3d-math
*/
identity(dst = new this.MatType(16))
{
dst[ 0] = 1;
dst[ 1] = 0;
dst[ 2] = 0;
dst[ 3] = 0;
dst[ 4] = 0;
dst[ 5] = 1;
dst[ 6] = 0;
dst[ 7] = 0;
dst[ 8] = 0;
dst[ 9] = 0;
dst[10] = 1;
dst[11] = 0;
dst[12] = 0;
dst[13] = 0;
dst[14] = 0;
dst[15] = 1;
return dst;
}
/**
* Multiply by translation matrix.
* @param m matrix to multiply
* @param {number} tx x translation.
* @param {number} ty y translation.
* @param {number} tz z translation.
* @param [dst] optional matrix to store result
* @return dst or a new matrix if none provided
* @memberOf module:webgl-3d-math
*/
translate(m, tx, ty, tz, dst = new this.MatType(16))
{
// This is the optimized version of
// return multiply(m, translation(tx, ty, tz), dst);
var m00 = m[0];
var m01 = m[1];
var m02 = m[2];
var m03 = m[3];
var m10 = m[1 * 4 + 0];
var m11 = m[1 * 4 + 1];
var m12 = m[1 * 4 + 2];
var m13 = m[1 * 4 + 3];
var m20 = m[2 * 4 + 0];
var m21 = m[2 * 4 + 1];
var m22 = m[2 * 4 + 2];
var m23 = m[2 * 4 + 3];
var m30 = m[3 * 4 + 0];
var m31 = m[3 * 4 + 1];
var m32 = m[3 * 4 + 2];
var m33 = m[3 * 4 + 3];
if (m !== dst)
{
dst[ 0] = m00;
dst[ 1] = m01;
dst[ 2] = m02;
dst[ 3] = m03;
dst[ 4] = m10;
dst[ 5] = m11;
dst[ 6] = m12;
dst[ 7] = m13;
dst[ 8] = m20;
dst[ 9] = m21;
dst[10] = m22;
dst[11] = m23;
}
dst[12] = m00 * tx + m10 * ty + m20 * tz + m30;
dst[13] = m01 * tx + m11 * ty + m21 * tz + m31;
dst[14] = m02 * tx + m12 * ty + m22 * tz + m32;
dst[15] = m03 * tx + m13 * ty + m23 * tz + m33;
return dst;
}
yRotate(m, angleInRadians, dst = new this.MatType(16))
{
// this is the optimized version of
// return multiply(m, yRotation(angleInRadians), dst);
var m00 = m[0 * 4 + 0];
var m01 = m[0 * 4 + 1];
var m02 = m[0 * 4 + 2];
var m03 = m[0 * 4 + 3];
var m20 = m[2 * 4 + 0];
var m21 = m[2 * 4 + 1];
var m22 = m[2 * 4 + 2];
var m23 = m[2 * 4 + 3];
var c = Math.cos(angleInRadians);
var s = Math.sin(angleInRadians);
dst[ 0] = c * m00 - s * m20;
dst[ 1] = c * m01 - s * m21;
dst[ 2] = c * m02 - s * m22;
dst[ 3] = c * m03 - s * m23;
dst[ 8] = c * m20 + s * m00;
dst[ 9] = c * m21 + s * m01;
dst[10] = c * m22 + s * m02;
dst[11] = c * m23 + s * m03;
if (m !== dst)
{
dst[ 4] = m[ 4];
dst[ 5] = m[ 5];
dst[ 6] = m[ 6];
dst[ 7] = m[ 7];
dst[12] = m[12];
dst[13] = m[13];
dst[14] = m[14];
dst[15] = m[15];
}
return dst;
}
/**
* Multiply by an z rotation matrix
* @param m matrix to multiply
* @param {number} angleInRadians amount to rotate
* @param [dst] optional matrix to store result
* @return dst or a new matrix if none provided
* @memberOf module:webgl-3d-math
*/
zRotate(m, angleInRadians, dst = new this.MatType(16))
{
// This is the optimized version of
// return multiply(m, zRotation(angleInRadians), dst);
var m00 = m[0 * 4 + 0];
var m01 = m[0 * 4 + 1];
var m02 = m[0 * 4 + 2];
var m03 = m[0 * 4 + 3];
var m10 = m[1 * 4 + 0];
var m11 = m[1 * 4 + 1];
var m12 = m[1 * 4 + 2];
var m13 = m[1 * 4 + 3];
var c = Math.cos(angleInRadians);
var s = Math.sin(angleInRadians);
dst[ 0] = c * m00 + s * m10;
dst[ 1] = c * m01 + s * m11;
dst[ 2] = c * m02 + s * m12;
dst[ 3] = c * m03 + s * m13;
dst[ 4] = c * m10 - s * m00;
dst[ 5] = c * m11 - s * m01;
dst[ 6] = c * m12 - s * m02;
dst[ 7] = c * m13 - s * m03;
if (m !== dst) {
dst[ 8] = m[ 8];
dst[ 9] = m[ 9];
dst[10] = m[10];
dst[11] = m[11];
dst[12] = m[12];
dst[13] = m[13];
dst[14] = m[14];
dst[15] = m[15];
}
return dst;
}
/**
* Creates a lookAt matrix.
* This is a world matrix for a camera. In other words it will transform
* from the origin to a place and orientation in the world. For a view
* matrix take the inverse of this.
* @param cameraPosition position of the camera
* @param target position of the target
* @param up direction
* @param [dst] optional matrix to store result
* @return dst or a new matrix if none provided
* @memberOf module:webgl-3d-math
*/
lookAt(cameraPosition, target, up, dst = new this.MatType(16))
{
var zAxis = this.normalize(
this.subtractVectors(cameraPosition, target));
var xAxis = this.normalize(this.cross(up, zAxis));
var yAxis = this.normalize(this.cross(zAxis, xAxis));
dst[ 0] = xAxis[0];
dst[ 1] = xAxis[1];
dst[ 2] = xAxis[2];
dst[ 3] = 0;
dst[ 4] = yAxis[0];
dst[ 5] = yAxis[1];
dst[ 6] = yAxis[2];
dst[ 7] = 0;
dst[ 8] = zAxis[0];
dst[ 9] = zAxis[1];
dst[10] = zAxis[2];
dst[11] = 0;
dst[12] = cameraPosition[0];
dst[13] = cameraPosition[1];
dst[14] = cameraPosition[2];
dst[15] = 1;
return dst;
}
/**
* Computes the inverse of a matrix.
* @param m matrix to compute inverse of
* @param [dst] optional matrix to store result
* @return dst or a new matrix if none provided
* @memberOf module:webgl-3d-math
*/
inverse(m, dst = new this.MatType(16))
{
var m00 = m[0 * 4 + 0];
var m01 = m[0 * 4 + 1];
var m02 = m[0 * 4 + 2];
var m03 = m[0 * 4 + 3];
var m10 = m[1 * 4 + 0];
var m11 = m[1 * 4 + 1];
var m12 = m[1 * 4 + 2];
var m13 = m[1 * 4 + 3];
var m20 = m[2 * 4 + 0];
var m21 = m[2 * 4 + 1];
var m22 = m[2 * 4 + 2];
var m23 = m[2 * 4 + 3];
var m30 = m[3 * 4 + 0];
var m31 = m[3 * 4 + 1];
var m32 = m[3 * 4 + 2];
var m33 = m[3 * 4 + 3];
var tmp_0 = m22 * m33;
var tmp_1 = m32 * m23;
var tmp_2 = m12 * m33;
var tmp_3 = m32 * m13;
var tmp_4 = m12 * m23;
var tmp_5 = m22 * m13;
var tmp_6 = m02 * m33;
var tmp_7 = m32 * m03;
var tmp_8 = m02 * m23;
var tmp_9 = m22 * m03;
var tmp_10 = m02 * m13;
var tmp_11 = m12 * m03;
var tmp_12 = m20 * m31;
var tmp_13 = m30 * m21;
var tmp_14 = m10 * m31;
var tmp_15 = m30 * m11;
var tmp_16 = m10 * m21;
var tmp_17 = m20 * m11;
var tmp_18 = m00 * m31;
var tmp_19 = m30 * m01;
var tmp_20 = m00 * m21;
var tmp_21 = m20 * m01;
var tmp_22 = m00 * m11;
var tmp_23 = m10 * m01;
var t0 = (tmp_0 * m11 + tmp_3 * m21 + tmp_4 * m31) -
(tmp_1 * m11 + tmp_2 * m21 + tmp_5 * m31);
var t1 = (tmp_1 * m01 + tmp_6 * m21 + tmp_9 * m31) -
(tmp_0 * m01 + tmp_7 * m21 + tmp_8 * m31);
var t2 = (tmp_2 * m01 + tmp_7 * m11 + tmp_10 * m31) -
(tmp_3 * m01 + tmp_6 * m11 + tmp_11 * m31);
var t3 = (tmp_5 * m01 + tmp_8 * m11 + tmp_11 * m21) -
(tmp_4 * m01 + tmp_9 * m11 + tmp_10 * m21);
var d = 1.0 / (m00 * t0 + m10 * t1 + m20 * t2 + m30 * t3);
dst[0] = d * t0;
dst[1] = d * t1;
dst[2] = d * t2;
dst[3] = d * t3;
dst[4] = d * ((tmp_1 * m10 + tmp_2 * m20 + tmp_5 * m30) -
(tmp_0 * m10 + tmp_3 * m20 + tmp_4 * m30));
dst[5] = d * ((tmp_0 * m00 + tmp_7 * m20 + tmp_8 * m30) -
(tmp_1 * m00 + tmp_6 * m20 + tmp_9 * m30));
dst[6] = d * ((tmp_3 * m00 + tmp_6 * m10 + tmp_11 * m30) -
(tmp_2 * m00 + tmp_7 * m10 + tmp_10 * m30));
dst[7] = d * ((tmp_4 * m00 + tmp_9 * m10 + tmp_10 * m20) -
(tmp_5 * m00 + tmp_8 * m10 + tmp_11 * m20));
dst[8] = d * ((tmp_12 * m13 + tmp_15 * m23 + tmp_16 * m33) -
(tmp_13 * m13 + tmp_14 * m23 + tmp_17 * m33));
dst[9] = d * ((tmp_13 * m03 + tmp_18 * m23 + tmp_21 * m33) -
(tmp_12 * m03 + tmp_19 * m23 + tmp_20 * m33));
dst[10] = d * ((tmp_14 * m03 + tmp_19 * m13 + tmp_22 * m33) -
(tmp_15 * m03 + tmp_18 * m13 + tmp_23 * m33));
dst[11] = d * ((tmp_17 * m03 + tmp_20 * m13 + tmp_23 * m23) -
(tmp_16 * m03 + tmp_21 * m13 + tmp_22 * m23));
dst[12] = d * ((tmp_14 * m22 + tmp_17 * m32 + tmp_13 * m12) -
(tmp_16 * m32 + tmp_12 * m12 + tmp_15 * m22));
dst[13] = d * ((tmp_20 * m32 + tmp_12 * m02 + tmp_19 * m22) -
(tmp_18 * m22 + tmp_21 * m32 + tmp_13 * m02));
dst[14] = d * ((tmp_18 * m12 + tmp_23 * m32 + tmp_15 * m02) -
(tmp_22 * m32 + tmp_14 * m02 + tmp_19 * m12));
dst[15] = d * ((tmp_22 * m22 + tmp_16 * m02 + tmp_21 * m12) -
(tmp_20 * m12 + tmp_23 * m22 + tmp_17 * m02));
return dst;
}
/**
* Takes two 4-by-4 matrices, a and b, and computes the product in the order
* that pre-composes b with a. In other words, the matrix returned will
* transform by b first and then a. Note this is subtly different from just
* multiplying the matrices together. For given a and b, this function returns
* the same object in both row-major and column-major mode.
* @param a A matrix.
* @param b A matrix.
* @param [dst] optional matrix to store result
* @return dst or a new matrix if none provided
*/
multiply(a, b, dst = new this.MatType(16))
{
var b00 = b[0 * 4 + 0];
var b01 = b[0 * 4 + 1];
var b02 = b[0 * 4 + 2];
var b03 = b[0 * 4 + 3];
var b10 = b[1 * 4 + 0];
var b11 = b[1 * 4 + 1];
var b12 = b[1 * 4 + 2];
var b13 = b[1 * 4 + 3];
var b20 = b[2 * 4 + 0];
var b21 = b[2 * 4 + 1];
var b22 = b[2 * 4 + 2];
var b23 = b[2 * 4 + 3];
var b30 = b[3 * 4 + 0];
var b31 = b[3 * 4 + 1];
var b32 = b[3 * 4 + 2];
var b33 = b[3 * 4 + 3];
var a00 = a[0 * 4 + 0];
var a01 = a[0 * 4 + 1];
var a02 = a[0 * 4 + 2];
var a03 = a[0 * 4 + 3];
var a10 = a[1 * 4 + 0];
var a11 = a[1 * 4 + 1];
var a12 = a[1 * 4 + 2];
var a13 = a[1 * 4 + 3];
var a20 = a[2 * 4 + 0];
var a21 = a[2 * 4 + 1];
var a22 = a[2 * 4 + 2];
var a23 = a[2 * 4 + 3];
var a30 = a[3 * 4 + 0];
var a31 = a[3 * 4 + 1];
var a32 = a[3 * 4 + 2];
var a33 = a[3 * 4 + 3];
dst[ 0] = b00 * a00 + b01 * a10 + b02 * a20 + b03 * a30;
dst[ 1] = b00 * a01 + b01 * a11 + b02 * a21 + b03 * a31;
dst[ 2] = b00 * a02 + b01 * a12 + b02 * a22 + b03 * a32;
dst[ 3] = b00 * a03 + b01 * a13 + b02 * a23 + b03 * a33;
dst[ 4] = b10 * a00 + b11 * a10 + b12 * a20 + b13 * a30;
dst[ 5] = b10 * a01 + b11 * a11 + b12 * a21 + b13 * a31;
dst[ 6] = b10 * a02 + b11 * a12 + b12 * a22 + b13 * a32;
dst[ 7] = b10 * a03 + b11 * a13 + b12 * a23 + b13 * a33;
dst[ 8] = b20 * a00 + b21 * a10 + b22 * a20 + b23 * a30;
dst[ 9] = b20 * a01 + b21 * a11 + b22 * a21 + b23 * a31;
dst[10] = b20 * a02 + b21 * a12 + b22 * a22 + b23 * a32;
dst[11] = b20 * a03 + b21 * a13 + b22 * a23 + b23 * a33;
dst[12] = b30 * a00 + b31 * a10 + b32 * a20 + b33 * a30;
dst[13] = b30 * a01 + b31 * a11 + b32 * a21 + b33 * a31;
dst[14] = b30 * a02 + b31 * a12 + b32 * a22 + b33 * a32;
dst[15] = b30 * a03 + b31 * a13 + b32 * a23 + b33 * a33;
return dst;
}
/**
* Computes a 4-by-4 perspective transformation matrix given the angular height
* of the frustum, the aspect ratio, and the near and far clipping planes. The
* arguments define a frustum extending in the negative z direction. The given
* angle is the vertical angle of the frustum, and the horizontal angle is
* determined to produce the given aspect ratio. The arguments near and far are
* the distances to the near and far clipping planes. Note that near and far
* are not z coordinates, but rather they are distances along the negative
* z-axis. The matrix generated sends the viewing frustum to the unit box.
* We assume a unit box extending from -1 to 1 in the x and y dimensions and
* from -1 to 1 in the z dimension.
* @param {number} fieldOfViewInRadians field of view in y axis.
* @param {number} aspect aspect of viewport (width / height)
* @param {number} near near Z clipping plane
* @param {number} far far Z clipping plane
* @param [dst] optional matrix to store result
* @return dst or a new matrix if none provided
* @memberOf module:webgl-3d-math
*/
perspective(fieldOfViewInRadians, aspect, near, far, dst = new this.MatType(16))
{
//dst = dst || new this.MatType(16);
var f = Math.tan(Math.PI * 0.5 - 0.5 * fieldOfViewInRadians);
var rangeInv = 1.0 / (near - far);
dst[0] = f / aspect;
dst[1] = 0;
dst[2] = 0;
dst[3] = 0;
dst[4] = 0;
dst[5] = f;
dst[6] = 0;
dst[7] = 0;
dst[8] = 0;
dst[9] = 0;
dst[10] = (near + far) * rangeInv;
dst[11] = -1;
dst[12] = 0;
dst[13] = 0;
dst[14] = near * far * rangeInv * 2;
dst[15] = 0;
return dst;
}
/**
* Computes a 4-by-4 orthographic projection matrix given the coordinates of the
* planes defining the axis-aligned, box-shaped viewing volume. The matrix
* generated sends that box to the unit box. Note that although left and right
* are x coordinates and bottom and top are y coordinates, near and far
* are not z coordinates, but rather they are distances along the negative
* z-axis. We assume a unit box extending from -1 to 1 in the x and y
* dimensions and from -1 to 1 in the z dimension.
* @param {number} left The x coordinate of the left plane of the box.
* @param {number} right The x coordinate of the right plane of the box.
* @param {number} bottom The y coordinate of the bottom plane of the box.
* @param {number} top The y coordinate of the right plane of the box.
* @param {number} near The negative z coordinate of the near plane of the box.
* @param {number} far The negative z coordinate of the far plane of the box.
* @param [dst] optional matrix to store result
* @return dst or a new matrix if none provided
* @memberOf module:webgl-3d-math
*/
orthographic(left, right, bottom, top, near, far, dst = new this.MatType(16))
{
//dst = dst || new MatType(16);
dst[ 0] = 2 / (right - left);
dst[ 1] = 0;
dst[ 2] = 0;
dst[ 3] = 0;
dst[ 4] = 0;
dst[ 5] = 2 / (top - bottom);
dst[ 6] = 0;
dst[ 7] = 0;
dst[ 8] = 0;
dst[ 9] = 0;
dst[10] = 2 / (near - far);
dst[11] = 0;
dst[12] = (left + right) / (left - right);
dst[13] = (bottom + top) / (bottom - top);
dst[14] = (near + far) / (near - far);
dst[15] = 1;
return dst;
}
/**
* normalizes a vector.
* @param v vector to normalize
* @param dst optional vector3 to store result
* @return dst or new Vector3 if not provided
* @memberOf module:webgl-3d-math
*/
normalize(v, dst = new this.MatType(3))
{
var length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
// make sure we don't divide by 0.
if (length > 0.00001)
{
dst[0] = v[0] / length;
dst[1] = v[1] / length;
dst[2] = v[2] / length;
}
return dst;
}
/**
* subtracts 2 vectors3s
* @param a a
* @param b b
* @param dst optional vector3 to store result
* @return dst or new Vector3 if not provided
* @memberOf module:webgl-3d-math
*/
subtractVectors(a, b, dst = new this.MatType(3))
{
dst[0] = a[0] - b[0];
dst[1] = a[1] - b[1];
dst[2] = a[2] - b[2];
return dst;
}
/**
* Computes the cross product of 2 vectors3s
* @param a a
* @param b b
* @param dst optional vector3 to store result
* @return dst or new Vector3 if not provided
* @memberOf module:webgl-3d-math
*/
cross(a, b, dst = new this.MatType(3))
{
//dst = dst || new this.MatType(3);
dst[0] = a[1] * b[2] - a[2] * b[1];
dst[1] = a[2] * b[0] - a[0] * b[2];
dst[2] = a[0] * b[1] - a[1] * b[0];
return dst;
}
/**
* Transposes a matrix.
* @param m matrix to transpose.
* @param [dst] optional matrix to store result
* @return dst or a new matrix if none provided
* @memberOf module:webgl-3d-math
*/
transpose(m, dst = new this.MatType(16))
{
dst[ 0] = m[0];
dst[ 1] = m[4];
dst[ 2] = m[8];
dst[ 3] = m[12];
dst[ 4] = m[1];
dst[ 5] = m[5];
dst[ 6] = m[9];
dst[ 7] = m[13];
dst[ 8] = m[2];
dst[ 9] = m[6];
dst[10] = m[10];
dst[11] = m[14];
dst[12] = m[3];
dst[13] = m[7];
dst[14] = m[11];
dst[15] = m[15];
return dst;
}
}