-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmotion_planning.py
237 lines (195 loc) · 9.76 KB
/
motion_planning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
import time
import msgpack
from enum import Enum, auto
import numpy as np
import csv
from planning_utils import a_star, heuristic, create_grid
from udacidrone import Drone
from udacidrone.connection import MavlinkConnection
from udacidrone.messaging import MsgID
from udacidrone.frame_utils import global_to_local
class States(Enum):
MANUAL = auto()
ARMING = auto()
TAKEOFF = auto()
WAYPOINT = auto()
LANDING = auto()
DISARMING = auto()
PLANNING = auto()
class MotionPlanning(Drone):
def __init__(self, connection, goal=None):
super().__init__(connection)
self.target_position = np.array([0.0, 0.0, 0.0])
self.waypoints = []
self.in_mission = True
self.check_state = {}
# This is added to accomplish the flexible goal position requirement
# If a goal location is specified, it is going to be interpeted as a gloabal position (lon, lat, alt) and used instead of the default
self.goal = None
if goal and len(goal)==3 and goal[0] and goal[1] and goal[2]:
self.goal = goal
# initial state
self.flight_state = States.MANUAL
# register all your callbacks here
self.register_callback(MsgID.LOCAL_POSITION, self.local_position_callback)
self.register_callback(MsgID.LOCAL_VELOCITY, self.velocity_callback)
self.register_callback(MsgID.STATE, self.state_callback)
def local_position_callback(self):
if self.flight_state == States.TAKEOFF:
if -1.0 * self.local_position[2] > 0.95 * self.target_position[2]:
self.waypoint_transition()
elif self.flight_state == States.WAYPOINT:
if np.linalg.norm(self.target_position[0:2] - self.local_position[0:2]) < 1.0:
if len(self.waypoints) > 0:
self.waypoint_transition()
else:
if np.linalg.norm(self.local_velocity[0:2]) < 1.0:
self.landing_transition()
def velocity_callback(self):
if self.flight_state == States.LANDING:
if self.global_position[2] - self.global_home[2] < 0.1:
if abs(self.local_position[2]) < 0.01:
self.disarming_transition()
def state_callback(self):
if self.in_mission:
if self.flight_state == States.MANUAL:
self.arming_transition()
elif self.flight_state == States.ARMING:
if self.armed:
self.plan_path()
elif self.flight_state == States.PLANNING:
self.takeoff_transition()
elif self.flight_state == States.DISARMING:
if ~self.armed & ~self.guided:
self.manual_transition()
def arming_transition(self):
self.flight_state = States.ARMING
print("arming transition")
self.arm()
self.take_control()
def takeoff_transition(self):
self.flight_state = States.TAKEOFF
print("takeoff transition")
self.takeoff(self.target_position[2])
def waypoint_transition(self):
self.flight_state = States.WAYPOINT
print("waypoint transition")
self.target_position = self.waypoints.pop(0)
print('target position', self.target_position)
self.cmd_position(self.target_position[0], self.target_position[1], self.target_position[2], self.target_position[3])
def landing_transition(self):
self.flight_state = States.LANDING
print("landing transition")
self.land()
def disarming_transition(self):
self.flight_state = States.DISARMING
print("disarm transition")
self.disarm()
self.release_control()
def manual_transition(self):
self.flight_state = States.MANUAL
print("manual transition")
self.stop()
self.in_mission = False
def send_waypoints(self):
print("Sending waypoints to simulator ...")
data = msgpack.dumps(self.waypoints)
self.connection._master.write(data)
# Method for path pruning based on waypoint colineaity
def prune_path(self, path, colinearity_tolerance=1):
i = 0
while i < len(path) - 2:
# We check each triplet of consecutive waypoints
point_1 = np.array([path[i][0], path[i][1], 1.]).reshape(1, -1)
point_2 = np.array([path[i+1][0], path[i+1][1], 1.]).reshape(1, -1)
point_3 = np.array([path[i+2][0], path[i+2][1], 1.]).reshape(1, -1)
# If the waypoints are (nearly) colinear, we remove the middle one from the path
if abs(np.linalg.det(np.concatenate((point_1, point_2, point_3), 0))) < colinearity_tolerance:
path.remove(path[i+1])
else:
i += 1
return path
def plan_path(self):
self.flight_state = States.PLANNING
print("Searching for a path ...")
TARGET_ALTITUDE = 5
SAFETY_DISTANCE = 5
self.target_position[2] = TARGET_ALTITUDE
# DONE: read lat0, lon0 from colliders into floating point values
with open('colliders.csv', newline='') as f:
reader = csv.reader(f)
row1 = next(reader)
lat0, lon0 = float(row1[0][5:]), float(row1[1][5:])
# DONE: set home position to (lon0, lat0, 0)
self.set_home_position(lon0, lat0, 0)
# DONE: retrieve current global position
# I do this using self.global_position @Property
# DONE: convert to current local position using global_to_local()
# Convert a global position (lon, lat, up) to a local position (north, east, down) relative to the home position.
current_north, current_east, _ = global_to_local(self.global_position, self.global_home)
print('global home {0}, position {1}, local position {2}'.format(self.global_home, self.global_position,
self.local_position))
# Read in obstacle map
data = np.loadtxt('colliders.csv', delimiter=',', dtype='Float64', skiprows=2)
# Define a grid for a particular altitude and safety margin around obstacles
grid, north_offset, east_offset = create_grid(data, TARGET_ALTITUDE, SAFETY_DISTANCE)
print("North offset = {0}, east offset = {1}".format(north_offset, east_offset))
# Define starting point on the grid (this is just grid center)
grid_start = (-north_offset, -east_offset)
# DONE: convert start position to current position rather than map center
grid_start = (int(np.ceil(current_north-north_offset)), int(np.ceil(current_east-east_offset)))
# Set goal as some arbitrary position on the grid
# grid_goal = (-north_offset + 10, -east_offset + 10)
# Changed this so that default goal position is not inside the building and the drone is able to land!
grid_goal = (-north_offset +30 , -east_offset + 10)
# DONE: adapt to set goal as latitude / longitude position and convert
# If a goal location has been specified we override the default
if self.goal:
goal_north, goal_east, _ = global_to_local(self.goal, self.global_home)
grid_goal = (int(goal_north - north_offset), int(goal_east - east_offset))
print('Goal specified by user!')
print('Goal - Global position: {}'.format(self.goal))
print('Goal - Grid position : {}'.format(grid_goal))
# Run A* to find a path from start to goal
# DONE: add diagonal motions with a cost of sqrt(2) to your A* implementation
# or move to a different search space such as a graph (not done here)
# This is done in planning_utils.py
print('Local Start and Goal: ', grid_start, grid_goal)
path, _ = a_star(grid, heuristic, grid_start, grid_goal)
print('Original path length: {}'.format(len(path)))
# DONE: prune path to minimize number of waypoints
path = self.prune_path(path)
print('Pruned path length: {}'.format(len(path)))
# Convert path to waypoints
waypoints = [[p[0] + north_offset, p[1] + east_offset, TARGET_ALTITUDE, 0] for p in path]
# Set self.waypoints
self.waypoints = waypoints
# DONE: send waypoints to sim (this is just for visualization of waypoints)
self.send_waypoints()
def start(self):
self.start_log("Logs", "NavLog.txt")
print("starting connection")
self.connection.start()
# Only required if they do threaded
# while self.in_mission:
# pass
self.stop_log()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=5760, help='Port number')
parser.add_argument('--host', type=str, default='127.0.0.1', help="host address, i.e. '127.0.0.1'")
# Adding optional arguments for specific goal position (geodetic coordinates)- If the user wants to specify a goal position, they must pass all 3 arguments
parser.add_argument('--glon', type=float, default=None, help="Goal longitude (-122.XXXXX)")
parser.add_argument('--glat', type=float, default=None, help="Goal latitude (37.XXXXX)")
parser.add_argument('--galt', type=float, default=None, help="Goal altitude (Non-zero! Pass something small, like 0.05)")
args = parser.parse_args()
conn = MavlinkConnection('tcp:{0}:{1}'.format(args.host, args.port), timeout=60)
# If goal position arguments have been provided, pass them to the Drone
if args.glon and args.glat and args.galt:
print("Passing custom goal position to the drone...")
drone = MotionPlanning(conn, goal=[float(args.glon), float(args.glat), float(args.galt)])
else:
drone = MotionPlanning(conn)
time.sleep(1)
drone.start()