-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathutils.py
128 lines (108 loc) · 3.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Source: https://github.com/kuangliu/pytorch-cifar/blob/master/utils.py
from typing import List
import time
import os
import sys
import torch
import torch.nn as nn
from swin_transformer_v2 import SwinTransformerV2
_, term_width = os.popen('stty size', 'r').read().split()
term_width = int(term_width)
TOTAL_BAR_LENGTH = 30.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH * current / total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width - int(TOTAL_BAR_LENGTH) - len(msg) - 3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width - int(TOTAL_BAR_LENGTH / 2) + 2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current + 1, total))
if current < total - 1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600 / 24)
seconds = seconds - days * 3600 * 24
hours = int(seconds / 3600)
seconds = seconds - hours * 3600
minutes = int(seconds / 60)
seconds = seconds - minutes * 60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds * 1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f
class ClassificationModelWrapper(nn.Module):
"""
Wraps a Swin Transformer V2 model to perform image classification.
"""
def __init__(self, model: SwinTransformerV2, number_of_classes: int = 10, output_channels: int = 768) -> None:
"""
Constructor method
:param model: (SwinTransformerV2) Swin Transformer V2 model
:param number_of_classes: (int) Number of classes to predict
:param output_channels: (int) Output channels of the last feature map of the Swin Transformer V2 model
"""
# Call super constructor
super(ClassificationModelWrapper, self).__init__()
# Save model
self.model: SwinTransformerV2 = model
# Init adaptive average pooling layer
self.pooling: nn.Module = nn.AdaptiveAvgPool2d(1)
# Init classification head
self.classification_head: nn.Module = nn.Linear(in_features=output_channels, out_features=number_of_classes)
def forward(self, input: torch.Tensor) -> torch.Tensor:
"""
Forward pass
:param input: (torch.Tensor) Input tensor of the shape [batch size, channels, height, width]
:return: (torch.Tensor) Output classification of the shape [batch size, number of classes]
"""
# Compute features
features: List[torch.Tensor] = self.model(input)
# Compute classification
classification: torch.Tensor = self.classification_head(self.pooling(features[-1]).flatten(start_dim=1))
return classification