-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathapp.py
211 lines (176 loc) · 6.56 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
from PIL import Image
import torch
from diffusers import StableDiffusionPipeline
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
model_id = "stabilityai/stable-diffusion-2-1"
# model_id = "./stable-diffusion-2-1"
pip_2_1 = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pip_2_1 = pip_2_1.to("cuda")
prompt_prev = None
sd_options_prev = None
seed_prev = None
sd_image_prev = None
def infer(prompt, sd_options, seed, b1, b2, s1, s2):
global prompt_prev
global sd_options_prev
global seed_prev
global sd_image_prev
# if sd_options == 'SD1.5':
# pip = pip_1_5
# elif sd_options == 'SD2.1':
# pip = pip_2_1
# else:
# pip = pip_1_4
pip = pip_2_1
run_baseline = False
if prompt != prompt_prev or sd_options != sd_options_prev or seed != seed_prev:
run_baseline = True
prompt_prev = prompt
sd_options_prev = sd_options
seed_prev = seed
if run_baseline:
register_free_upblock2d(pip, b1=1.0, b2=1.0, s1=1.0, s2=1.0)
register_free_crossattn_upblock2d(pip, b1=1.0, b2=1.0, s1=1.0, s2=1.0)
torch.manual_seed(seed)
print("Generating SD:")
sd_image = pip(prompt, num_inference_steps=25).images[0]
sd_image_prev = sd_image
else:
sd_image = sd_image_prev
register_free_upblock2d(pip, b1=b1, b2=b2, s1=s1, s2=s1)
register_free_crossattn_upblock2d(pip, b1=b1, b2=b2, s1=s1, s2=s1)
torch.manual_seed(seed)
print("Generating FreeU:")
freeu_image = pip(prompt, num_inference_steps=25).images[0]
# First SD, then freeu
images = [sd_image, freeu_image]
return images
examples = [
[
"A drone view of celebration with Christma tree and fireworks, starry sky - background.",
],
[
"happy dog wearing a yellow turtleneck, studio, portrait, facing camera, studio, dark bg"
],
[
"Campfire at night in a snowy forest with starry sky in the background."
],
[
"a fantasy landscape, trending on artstation"
],
[
"Busy freeway at night."
],
[
"An astronaut is riding a horse in the space in a photorealistic style."
],
[
"Turtle swimming in ocean."
],
[
"A storm trooper vacuuming the beach."
],
[
"An astronaut feeding ducks on a sunny afternoon, reflection from the water."
],
[
"Fireworks."
],
[
"A fat rabbit wearing a purple robe walking through a fantasy landscape."
],
[
"A koala bear playing piano in the forest."
],
[
"An astronaut flying in space, 4k, high resolution."
],
[
"Flying through fantasy landscapes, 4k, high resolution."
],
[
"A small cabin on top of a snowy mountain in the style of Disney, artstation",
],
[
"half human half cat, a human cat hybrid",
],
[
"a drone flying over a snowy forest."
],
]
css = """
h1 {
text-align: center;
}
#component-0 {
max-width: 730px;
margin: auto;
}
"""
block = gr.Blocks(css='style.css')
options = ['SD2.1']
with block:
gr.Markdown("# SD 2.1 vs. FreeU")
with gr.Group():
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
with gr.Column():
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
btn = gr.Button("Generate image", scale=0)
with gr.Row():
sd_options = gr.Dropdown(["SD2.1"], label="SD options", value="SD2.1", visible=False)
with gr.Group():
with gr.Row():
with gr.Accordion('FreeU Parameters (feel free to adjust these parameters based on your prompt): ', open=False):
with gr.Row():
b1 = gr.Slider(label='b1: backbone factor of the first stage block of decoder',
minimum=1,
maximum=1.6,
step=0.01,
value=1.1)
b2 = gr.Slider(label='b2: backbone factor of the second stage block of decoder',
minimum=1,
maximum=1.6,
step=0.01,
value=1.2)
with gr.Row():
s1 = gr.Slider(label='s1: skip factor of the first stage block of decoder',
minimum=0,
maximum=1,
step=0.1,
value=0.2)
s2 = gr.Slider(label='s2: skip factor of the second stage block of decoder',
minimum=0,
maximum=1,
step=0.1,
value=0.2)
seed = gr.Slider(label='seed',
minimum=0,
maximum=1000,
step=1,
value=42)
with gr.Row():
with gr.Group():
# btn = gr.Button("Generate image", scale=0)
with gr.Row():
with gr.Column() as c1:
image_1 = gr.Image(interactive=False)
image_1_label = gr.Markdown("SD")
with gr.Group():
# btn = gr.Button("Generate image", scale=0)
with gr.Row():
with gr.Column() as c2:
image_2 = gr.Image(interactive=False)
image_2_label = gr.Markdown("FreeU")
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, sd_options, seed, b1, b2, s1, s2], outputs=[image_1, image_2], cache_examples=False)
ex.dataset.headers = [""]
text.submit(infer, inputs=[text, sd_options, seed, b1, b2, s1, s2], outputs=[image_1, image_2])
btn.click(infer, inputs=[text, sd_options, seed, b1, b2, s1, s2], outputs=[image_1, image_2])
block.launch()
# block.queue(default_enabled=False).launch(share=False)