-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasl_pipeline100317.m
633 lines (547 loc) · 27.7 KB
/
asl_pipeline100317.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
function [gCBF,SNRout,outliers,f,Slices,isquant]=asl_pipeline100317(aslfolder,t1folder,M0folder,Lesionmask,fcnl,settings,defaults)
f=@asl_pipeline100317;
cd(aslfolder);
files=spm_select('FPList',aslfolder,['^f.*',settings.ext,'$']);
if isempty(files), files=spm_select('FPList',aslfolder,['^s.*',settings.ext,'$']);end%CYF020414
if ~isempty(M0folder)
M0files=spm_select('FPList',M0folder,'.*nii');
M0=M0files(1,:);clear M0files;
elseif mod(size(files,1),2)~=0%odd # of files
M0=files(1,:);files(1,:)=[];
end
scrsz = get(0,'ScreenSize');
if ~isempty(t1folder)
T1f=spm_vol(spm_select('FPList',t1folder,['^s.*',settings.ext]));
T1=T1f(1,:);
copyfile(T1.fname,fullfile(settings.CBF_folder,'T1.nii'),'f');
copyfile(T1.fname,fullfile(settings.intfolder,'T1.nii'),'f');
T1=fullfile(settings.intfolder,'T1.nii');
disp('Coregistering first image to T1');
fg=spm_figure('FindWin','Graphics');set(fg,'PaperPositionMode','auto','PaperType','usletter');
x = spm_coreg(T1,files(1,:));%coregister 1st Ctrl image to T1
%apply matrix to all images
M = inv(spm_matrix(x));
MM = zeros(4,4);
for m=1:size(files,1)
MM = spm_get_space(files(m,:));
spm_get_space(files(m,:), M*MM(:,:));
end
saveas(fg,fullfile(settings.pdffolder,'Coregister.pdf'));
if exist('M0','var')
x=spm_coreg(T1,M0);
M = inv(spm_matrix(x));
MM = spm_get_space(M0);
spm_get_space(M0, M*MM(:,:));
end
if ~isempty(Lesionmask)
if ~exist(fullfile(pwd,'tmp'),'dir')
mkdir(fullfile(pwd,'tmp'));
end
filenames=unzip(Lesionmask,fullfile(pwd,'tmp'));
test=cellfun(@isempty,strfind(filenames,'gz'));
if ~isempty(test(test==0))
gfilenames=gunzip(filenames{test==0});
delete(filenames{test==0});
end
lesionT1=spm_select('FPList',fullfile(pwd,'tmp'),'^T1.*.nii$');
lesionmask=filenames{cellfun(@isempty,strfind(filenames,'lesionmask.nii'))==0};
if isempty(lesionmask), lesionmask=filenames{cellfun(@isempty,strfind(gfilenames,'lesionmask.nii'))==0};end
[pth,nm,ext]=fileparts(lesionmask);
x=spm_coreg(T1,lesionT1);
M=inv(spm_matrix(x));
MM = spm_get_space(lesionmask);
spm_get_space(lesionmask, M*MM(:,:));
MM = spm_get_space(lesionT1);
spm_get_space(lesionT1, M*MM(:,:));
spm_reslice(char(files(1,:),lesionmask),struct('interp',1,'mask',1,'mean',0,'which',1,'wrap',[0 0 0]'));
movefile(fullfile(pth,['r',nm,ext]),fullfile(pth,['r',nm,'_EPI',ext]));
spm_reslice(char(T1,lesionmask),struct('interp',1,'mask',1,'mean',0,'which',1,'wrap',[0 0 0]'));
movefile(fullfile(pth,['r',nm,ext]),fullfile(pth,['r',nm,'_T1',ext]));
lesionmask=fullfile(pth,'rlesionmask_T1.nii');
%remove lesion from head & segment
headV=spm_vol(T1);
headIM=spm_read_vols(headV);
lesionIM=spm_read_vols(spm_vol(lesionmask));
headIM(lesionIM>0)=0;
headV.fname=fullfile(settings.CBF_folder,'T1_lesmasked.nii');headV.descrip='T1 with lesion masked out';
spm_create_vol(headV);spm_write_vol(headV,headIM);
copyfile(headV.fname,settings.intfolder);
T1=fullfile(settings.intfolder,'T1_lesmasked.nii');
lesmask=spm_read_vols(spm_vol(spm_select('FPList',pth,'^rlesionmask_EPI.nii$')));
end
%segment lesionmasked T1
if isempty(spm_select('FPList',settings.intfolder,'^p.*T1.*nii'))
load(which('VBMsegment.mat'));
matlabbatch{1}.spm.tools.vbm8.estwrite.data{1} = T1;
matlabbatch{1}.spm.tools.vbm8.estwrite.extopts.dartelwarp.normhigh.darteltpm = {which('Template_1_IXI550_MNI152.nii')};%070815 changed
matlabbatch{1}.spm.tools.vbm8.estwrite.opts.tpm = {which('TPM.nii')};%070815 changed
try
spm_jobman('initcfg');
spm_jobman('run_nogui',matlabbatch);
end
end
tissuefile=spm_select('FPList',settings.intfolder,'^p.*T1.*nii');
spm_reslice(char(files(1,:),tissuefile),struct('interp',1,'mask',1,'mean',0,'which',1,'wrap',[0 0 0]'));
tissuefile=spm_select('FPList',settings.intfolder,'^rp.*T1.*nii');
GM=spm_read_vols(spm_vol(tissuefile(1,:)));WM=spm_read_vols(spm_vol(tissuefile(2,:)));
CSF=spm_read_vols(spm_vol(tissuefile(3,:)));
mask=zeros(size(GM));mask(((GM+WM+CSF)>0.1))=1;
end
%Motion correction - regressing out ctrl-tag pattern from motion parameters
if isempty(strfind(settings.ser,'MoCo'))%realign ONLY IF not using SMS mocoseries
if isempty(spm_select('List',aslfolder,[settings.PatientID '_' settings.ser '_mocorrAll.png']))
fg=spm_figure('FindWin','Graphics');set(fg,'PaperPositionMode','auto','PaperType','usletter');
spm_realign_aslJC(files);%realign all images to 1st
saveas(fg,fullfile(settings.pdffolder,'Realign.pdf'));
end
end
if exist('M0','var')
spm_reslice(char(files,M0),settings.reslcflags);
[pth,nm,ext]=fileparts(M0);
M0=spm_select('FPList',pth,['^r.*',settings.ext,'$']);M0=spm_read_vols(spm_vol(M0));
else
spm_reslice(files,settings.reslcflags);
end
files=spm_select('FPList',aslfolder,['^r.*',settings.ext,'$']);
if isempty(files), files=spm_select('FPList',aslfolder,['^rs.*',settings.ext,'$']);end%CYF020414
if mod(size(files,1),2)~=0%odd # of files
files(1,:)=[];
end
if settings.smooth==1
disp(sprintf('Smoothing...kernel size=%d\n',settings.kernel));
for z=1:size(files,1)
[path name ext] = fileparts(files(z,:));
spm_smooth(files(z,:),fullfile(path,['s' name ext]),settings.kernel);
end
files=spm_select('FPList',aslfolder,['^sr.*',settings.ext,'$']);
if isempty(files), files=spm_select('FPList',aslfolder,['^f.*',settings.ext,'$']);end
if isempty(files), files=spm_select('FPList',aslfolder,['^s.*',settings.ext,'$']);end%CYF020414
if exist('M0','var')
[path name ext] = fileparts(M0);
spm_smooth(M0,fullfile(path,['s' name ext]),settings.kernel);
M0=spm_select('FPList',M0folder,['^s.*',settings.ext,'$']);M0=spm_read_vols(spm_vol(M0(1,:)));
end
end
if mod(size(files,1),2)~=0%odd # of files
M0=files(1,:);files(1,:)=[];
M0=spm_read_vols(spm_vol(M0));
end
data=spm_read_vols(spm_vol(files));ss=size(data);fac=ceil(sqrt(ss(3)));Slices=ss(3);
V_CBF=spm_vol(files(1,:));V_CBF.dt=[16 0];
V_tSNR=V_CBF;V_SNR=V_CBF;
if fcnl==1
V_CBFser=V_CBF;V_BOLD=V_CBFser;
end
V_mask=V_CBF;
V_CBF=V_CBF;
%for determining mask
Im=mean(data(:,:,:,2:2:end),4);
thmask=zeros(size(Im));settings.thres=0.1*max(Im(:));
thmask(find(Im>settings.thres))=1;
if exist('mask','var')
mask=mask.*thmask;
else
mask=thmask;
end
FOVmask=mask;
if exist('lesmask','var')
FOVmask(lesmask>0)=0;
end
V_mask.dt=[2 0];
V_mask.fname=fullfile(settings.CBF_folder,'FOVmask.nii');
spm_create_vol(V_mask);spm_write_vol(V_mask,FOVmask);
noisemask=zeros(size(mask));
noisemask([1:5 size(mask,2)-5:size(mask,2)],[1:10 size(mask,1)-10:size(mask,1)],:)=1;
paramfile=spm_select('FPList',aslfolder,['^rp_.*txt$']);
if ~isempty(paramfile)
param=load(paramfile);param(:,1:6)=[];
%***need to reorder JHU data or add to the following code
if strncmpi(settings.Site,'JHU',3)==1
temp=param;
param(1:2:end,:)=temp(1:size(temp,1)/2,:);
param(2:2:end,:)=temp(size(temp,1)/2+1:end,:);
end
param(:,4:6)=param(:,4:6)*180/pi;
if strcmp(settings.subt,'pairwise')
diffpara=abs(param(1:2:end,:)-param(2:2:end,:));
else
for a=2:size(param,1)-1
diffpara(a-1,:)=param(a,:)-0.5*(param(a-1,:)+param(a+1,:));
end
end
rawfilter=sum([abs(diffpara(:,1:3))>0.8 abs(diffpara(:,4:6))>0.8],2)>0;
gcbf=zeros(ss(4),1);csfsig=zeros(ss(4),1);
for n=1:ss(4)
gcbf(n,1)=mean(nonzeros(data(:,:,:,n).*mask));
end
%param = [param [0 0 0 0 0 0; diff(param)]];
if settings.regress==1
param=[param gcbf];
imtype=zeros(size(param,1),1);imtype(1:2:end)=-1;imtype(2:2:end)=1;
covs=zeros(size(param));
%mean centering
covs=param-repmat(mean(param,1),[ss(4) 1]);
%orthogonalizing
for n=1:size(param,2)
covs(:,n)=covs(:,n)-imtype*regress(covs(:,n),imtype);end
rdata=reshape(data,prod(ss(1:3)),ss(4))';
ndata =rdata - (covs * inv(covs' * covs)* covs') * rdata;
ndata =reshape(ndata', ss);
clear rdata covs;
else
ndata=data;
end
else
ndata=data;
rawfilter=zeros(length(gcbf),1);
end
%added 120817--------------------------
if settings.NLM==1
denoised_ndata=zeros(size(ndata));
for x=1:size(ndata,4)
denoised_ndata(:,:,:,x)=MRIdenoising(ndata(:,:,:,x));
end
%denoised_ndata=DWIDenoising(ndata);
ndata=denoised_ndata;
end
Ctrl=ndata(:,:,:,2:2:end);
Tag=ndata(:,:,:,1:2:end);
if isempty(M0folder)
if exist('M0','var')==0 && settings.is3D==0
M0=Ctrl;
end
end
if size(Ctrl,4)>size(Tag,4)
msg=sprintf('Warning: Ctrl volumes=%g > Tag volumes=%g!',size(Ctrl,4),size(Tag,4));
display(msg);
Ctrl(:,:,:,size(Ctrl,4)-1)=[];
elseif size(Tag,4)>size(Ctrl,4)
msg=sprintf('Warning: Tag volumes=%g > Ctrl volumes=%g!',size(Tag,4),size(Ctrl,4));
display(msg);
Tag(:,:,:,size(Tag,4)-1)=[];
end
V_CBF.fname=fullfile(settings.CBF_folder,'meanEPI.nii');
spm_create_vol(V_CBF);spm_write_vol(V_CBF,mean(Ctrl,4).*mask);
if strcmp(settings.subt,'pairwise')
Perf=Ctrl-Tag;SubOrder='Ctrl-Tag';
if fcnl==1, BOLD=(Ctrl+Tag)/2;end
subtmethod='pair';
else
SubOrder='Ctrl-Tag';
for a=1:size(Tag,4)-1
Perf(:,:,:,a*2-1)=Ctrl(:,:,:,a)-(Tag(:,:,:,a)+Tag(:,:,:,a+1))/2;
Perf(:,:,:,a*2)=(Ctrl(:,:,:,a)+Ctrl(:,:,:,a+1))/2-Tag(:,:,:,a+1);
if settings.asl==2&&isempty(M0folder)
M0(:,:,:,a*2-1)=Ctrl(:,:,:,a);
M0(:,:,:,a*2)=(Ctrl(:,:,:,a)+Ctrl(:,:,:,a+1))/2;
end
if fcnl==1
BOLD(:,:,:,a*2-1)=(Ctrl(:,:,:,a)+(Tag(:,:,:,a)+Tag(:,:,:,a+1))/2)/2;
BOLD(:,:,:,a*2)=((Ctrl(:,:,:,a)+Ctrl(:,:,:,a+1))/2+Tag(:,:,:,a))/2;
end
end
subtmethod='surr';%JC added 3/8/13
end
if mean(nonzeros(mean(Perf,4).*mask))<0
Perf=-Perf;
SubOrder='Tag-Ctrl';
end
Perf(isnan(Perf))=0;
%calculate uncorrected SNR and tSNR
uncorrPerf=data(:,:,:,2:2:end)-data(:,:,:,1:2:end);uncorrPerf(isnan(uncorrPerf))=0;
if mean(nonzeros(mean(uncorrPerf,4).*mask))<0
uncorrPerf=-uncorrPerf;
SubOrder='Tag-Ctrl';
end
meanuncorrPerf=mean(uncorrPerf,4);
SNRmap=meanuncorrPerf;
for slc=1:Slices
acqcorr=(slc-1)*settings.acq;
bkg(slc,1)=std(nonzeros(noisemask(:,:,slc).*meanuncorrPerf(:,:,slc)));
SNRmap(:,:,slc)=SNRmap(:,:,slc).*mask(:,:,slc)/(exp(-acqcorr/settings.T1b)*bkg(slc,1));
end
SNRmap(isnan(SNRmap)|isinf(SNRmap))=0;
uncorrSNR=mean(nonzeros(SNRmap));clear SNRmap meanuncorrPerf bkg;
noise=std(uncorrPerf.*repmat(mask,[1 1 1 size(uncorrPerf,4)]),1,4);noise(isnan(noise))=0;
tSNR=mask.*(mean(uncorrPerf.*repmat(mask,[1 1 1 size(uncorrPerf,4)]),4)./noise);
tSNR(isnan(tSNR))=0;tSNR(isinf(tSNR))=0;
uncorrtSNR=mean(nonzeros(tSNR));clear noise tSNR;
outliers=struct('dInd',[],'DeletedPairs',0,'FinalPairNo',size(Perf,4));
delInd=zeros(size(Perf,4),1);
if settings.outlier==1
switch settings.outliermethod
case 'Robust'
disp('Robust outlier removal using M-estimator.');
%output Perf maps for M-Estimator
for a=1:size(Perf,4)
%correct for slice acq effects
for slc=1:Slices
acqcorr=(slc-1)*settings.acq;
Perf(:,:,slc,a)=Perf(:,:,slc,a)/(exp(-acqcorr/settings.T1b));end
V_CBF.fname=fullfile(settings.CBF_folder,sprintf('tmpPerf_%04d.%s',a,settings.ext));
spm_create_vol(V_CBF);spm_write_vol(V_CBF,Perf(:,:,:,a));
end
inputFiles=spm_select('FPList',settings.CBF_folder,['^tmp.*',settings.ext,'$']);
asl_robustJC(cellstr(inputFiles), fullfile(settings.intfolder,sprintf('%s_RobustPerf.%s',settings.PatientID,settings.ext)), 1.345);
delete(fullfile(settings.CBF_folder,'tmp*'));
robustfile=spm_select('FPList',settings.intfolder,sprintf('%s_RobustPerf.%s',settings.PatientID,settings.ext));
outliers.dInd=length(find(delInd));
outliers.DeletedPairs=find(delInd);
outliers.FinalPairNo=size(Perf,4)-length(find(delInd));
Perf=spm_read_vols(spm_vol(robustfile));
asl_robustJC(cellstr(files(2:2:end,:)), fullfile(settings.intfolder,sprintf('%s_RobustM0.%s',settings.PatientID,settings.ext)), 1.345);
M0=spm_read_vols(spm_vol(fullfile(settings.intfolder,sprintf('%s_RobustM0.%s',settings.PatientID,settings.ext))));
case 'Zthreshold'
disp('Outlier removal using Z-threshold.');
for a=1:size(Perf,4)
%correct for slice acq effects
for slc=1:Slices
acqcorr=(slc-1)*settings.acq;
Perf(:,:,slc,a)=Perf(:,:,slc,a)/(exp(-acqcorr/settings.T1b));end
meanval(a,1)=mean(nonzeros(mask.*Perf(:,:,:,a)));
stdevval(a,1)=std(nonzeros(mask.*Perf(:,:,:,a)));
end
meanfilt=zeros(size(meanval));stdevfilt=meanfilt;
if log10(max(stdevval)-min(stdevval))>1
meanfilt(((meanval>(mean(meanval)+2.5*std(meanval)))|(meanval<(mean(meanval)-2.5*std(meanval)))))=1;
stdevfilt((stdevval>(mean(stdevval)+1.5*std(stdevval))))=1;
end
fg=figure('Position',[100 0 scrsz(3)*.75 scrsz(4)/2],'Color','white','PaperPositionMode','auto','PaperType','usletter');
subplot(1,2,1);plot(meanval,'-o');hold on;plot(1:length(meanval),repmat(mean(meanval),[1 length(meanval)]),'r');
plot(1:length(meanval),repmat(mean(meanval)+2.5*std(meanval),[1 length(meanval)]),'r--');
plot(1:length(meanval),repmat(mean(meanval)-2.5*std(meanval),[1 length(meanval)]),'r--');title('mean brain signal');hold off
subplot(1,2,2);plot(stdevval,'-o');hold on;plot(1:length(stdevval),repmat(mean(stdevval),[1 length(stdevval)]),'r');
plot(1:length(stdevval),repmat(mean(stdevval)+1.5*std(stdevval),[1 length(stdevval)]),'r--');title('stdev brain signal');hold off
subplot(1,2,1);hold on;plot(find(meanfilt==1),meanval(find(meanfilt==1)),'rx');
subplot(1,2,2);hold on;plot(find(stdevfilt==1),stdevval(find(stdevfilt==1)),'rx');
saveas(fg,'OutlierDetection.png');
delInd=(rawfilter+meanfilt+stdevfilt)>0;
PerfO=Perf;mean_PerfO=mean(PerfO,4);
Perf(:,:,:,find(delInd))=[];
if exist('M0','var') && size(M0,4)>1
M0O=M0;
M0(:,:,:,find(delInd))=[];
end
if fcnl==1
BOLDO=BOLD;
BOLD(:,:,:,find(delInd))=[];
end
outliers.dInd=length(find(delInd));
outliers.DeletedPairs=find(delInd);
outliers.FinalPairNo=size(PerfO,4)-length(find(delInd));
fileID=fopen(fullfile(aslfolder,['Report3.md']),'w');
fprintf(fileID,'![Outlier](OutlierDetection.png)\n');
fprintf(fileID,'Deleted images [%s] based on |mean|>2.5*std(mean)\n',num2str(find(meanfilt==1)'));
fprintf(fileID,'Deleted images [%s] based on stdev>1.5*std(stdev)\n',num2str(find(stdevfilt==1)'));
fprintf(fileID,'Deleted images [%s] based on motion\n',num2str(find(rawfilter)'));
fprintf(fileID,'Total: deleted %s/%s images: %s .\n',num2str(outliers.dInd),num2str(size(PerfO,4)),num2str(find(delInd)'));
fclose(fileID);
doscmd=sprintf('md2pdf %s/Report3.md %s/Report3.pdf',aslfolder,settings.pdffolder);dos(doscmd)
case 'None'
disp('No outlier removal.');
outliers.dInd=length(find(delInd));
outliers.DeletedPairs=find(delInd);
outliers.FinalPairNo=size(Perf,4)-length(find(delInd));
end
end
%output Perf & M0
save_avw(Perf,fullfile(settings.intfolder,sprintf('%s_%s_Perf.%s',settings.visit,settings.ser,settings.ext)),'f',[settings.Voxels' settings.TR/1000]);
if exist('M0','var')
save_avw(M0,fullfile(settings.intfolder,sprintf('%s_%s_M0.%s',settings.visit,settings.ser,settings.ext)),'f',[settings.Voxels' settings.TR/1000]);end
if fcnl==1
save_avw(BOLD,fullfile(settings.intfolder,sprintf('%s_%s_BOLD.%s',settings.visit,settings.ser,settings.ext)),'f',[settings.Voxels' settings.TR/1000]);
end
%SNR calculations
mean_Perf=mean(Perf,4);
SNRmap=mean_Perf;
cSNRmap=mean(Ctrl,4);
for slc=1:Slices
y=ceil(slc/fac);
x=slc-(y-1)*fac;
bkg(slc,:)=[std(nonzeros(noisemask(:,:,slc).*mean_Perf(:,:,slc))) std(nonzeros(noisemask(:,:,slc).*mean(Ctrl(:,:,slc,:),4)))];
SNRmap(:,:,slc)=(SNRmap(:,:,slc).*mask(:,:,slc))/bkg(slc,1);
cSNRmap(:,:,slc)=(cSNRmap(:,:,slc).*mask(:,:,slc))/bkg(slc,2);
mosSNR((y-1)*size(Ctrl,2)+1:y*size(Ctrl,2),(x-1)*size(Ctrl,1)+1:x*size(Ctrl,1))=imrotate(SNRmap(:,:,slc),90);
end
SNRmap(isnan(SNRmap)|isinf(SNRmap))=0;cSNRmap(isnan(cSNRmap)|isinf(cSNRmap))=0;
[row,col]=find(isnan(bkg));bkg(row,:)=[];
meansig=mean(nonzeros(mean_Perf.*mask));
meanCtrl=mean(nonzeros(Ctrl.*repmat(mask,[1,1,1,size(Ctrl,4)])));
fg=figure('Position',[100 0 scrsz(3)*.75 scrsz(4)/2],'Color','white','PaperPositionMode','auto','PaperType','usletter');
if strcmp(settings.outliermethod,'Robust')==1%Robust outlier detection only outputs mean_perf map
SNRout=struct('mPerfSignal',mean(mean_Perf((mask>0))),'rawPerfNoise',mean(bkg(:,1)),'uncorrSNR',uncorrSNR,'uncorrtSNR',uncorrtSNR,...
'rawPerfSNR',mean(SNRmap((mask>0))),'temporalPerfNoise',0,'temporalPerfSNR',NaN,...
'mCtrlSignal',meanCtrl,'rawCtrlNoise',mean(bkg(:,2)),'rawCtrlSNR',mean(cSNRmap((mask>0))));
imagesc(mosSNR,[-10 3*mean(nonzeros(SNRmap))]);colorbar('vert');title('Raw SNR');colormap gray;
else
noise=std(Perf.*repmat(mask,[1 1 1 size(Perf,4)]),1,4);noise(isnan(noise))=0;
tSNR=mask.*(mean(Perf.*repmat(mask,[1 1 1 size(Perf,4)]),4)./noise);
tSNR(isnan(tSNR))=0;tSNR(isinf(tSNR))=0;
SNRout=struct('mPerfSignal',mean(mean_Perf((mask>0))),'rawPerfNoise',mean(bkg(:,1)),'uncorrSNR',uncorrSNR,'uncorrtSNR',uncorrtSNR,...
'rawPerfSNR',mean(SNRmap((mask>0))),'temporalPerfNoise',mean(noise((mask>0))),'temporalPerfSNR',mean(tSNR((mask>0))),...
'mCtrlSignal',meanCtrl,'rawCtrlNoise',mean(bkg(:,2)),'rawCtrlSNR',mean(cSNRmap((mask>0))));
for n=1:Slices
y=ceil(n/fac);
x=n-(y-1)*fac;
mostSNR((y-1)*size(Ctrl,2)+1:y*size(Ctrl,2),(x-1)*size(Ctrl,1)+1:x*size(Ctrl,1))=imrotate(tSNR(:,:,n),90);
end
subplot(1,2,1);imagesc(mosSNR,[0 3*mean(nonzeros(SNRmap))]);colorbar('vert');title('Raw SNR');colormap gray;
subplot(1,2,2);imagesc(mostSNR,[0 3*mean(nonzeros(tSNR))]);colorbar('vert');title('Temporal SNR');colormap gray;
V_tSNR.fname=fullfile(settings.CBF_folder,sprintf('%s_%s_tSNR_%s.%s',settings.visit,settings.ser,subtmethod,settings.ext));
V_tSNR.descrip=sprintf('%s_%g pair tSNR*10 image',SubOrder,size(Perf,4));
V_tSNR=spm_create_vol(V_tSNR);
V_tSNR=spm_write_vol(V_tSNR,tSNR*10);
end
saveas(fg,'SNR.png');
V_SNR.fname=fullfile(settings.CBF_folder,sprintf('%s_%s_rawSNR_%s.%s',settings.visit,settings.ser,subtmethod,settings.ext));
V_SNR.descrip=sprintf('rSNR map of %s_%g pair averaged perfusion image',SubOrder,size(Perf,4));
V_SNR=spm_create_vol(V_SNR);
V_SNR=spm_write_vol(V_SNR,SNRmap);
if exist('M0','var')
gCBF=asl_quantification(Perf,M0,mask,V_CBF,settings,defaults);
isquant=1;
else
gCBF=mean(mean_Perf(mask>0));
isquant=0;
disp('WARNING: no M0, so no quantification!')
for n=1:size(mean_Perf,3)
y=ceil(n/fac);
x=n-(y-1)*fac;
temp1((y-1)*size(mean_Perf,2)+1:y*size(mean_Perf,2),(x-1)*size(mean_Perf,1)+1:x*size(mean_Perf,1))=imrotate(mean_Perf(:,:,n).*mask(:,:,n),90);
end
fg=figure('Position',[500 scrsz(4) scrsz(3)*.25 scrsz(4)/2],'color','white','PaperPositionMode','auto','PaperType','usletter');
subplot(2,1,1);imagesc(temp1,[0 120]);colormap(jet);colorbar('vert');
title('mean Perfusion map')
subplot(2,1,2);hist(mean_Perf(mask>0),128);xlabel('mean Perf signal (a.u.)');ylabel('# voxels');title('Histogram of mean perfusion signals');
saveas(fg,fullfile(settings.pdffolder,'meanPerf.pdf'));
end
mat=spm_select('FPList',settings.intfolder,'^y.*nii$');
T1=spm_select('FPList',settings.intfolder,'^T1.*nii$');
tissuefile=spm_select('FPList',settings.intfolder,'^p.*nii$');
mask=spm_select('FPList',settings.CBF_folder,'^FOVmask.nii$');
CBFfiles=spm_select('FPList',settings.CBF_folder,'.*qCBF.*nii$');
meanEPI=spm_select('FPList',settings.CBF_folder,'^meanEPI.*nii$');
if ~isempty(mat)
load(which('vbmwarp.mat'));
IMfiles=char(CBFfiles,mask,meanEPI);
if exist('T1','var')
IMfiles=char(IMfiles,T1,tissuefile);
end
matlabbatch{1,1}.spm.tools.vbm8.tools.defs.images=cellstr(IMfiles);
matlabbatch{1,1}.spm.tools.vbm8.tools.defs.field1=cellstr(mat);
try
spm_jobman('initcfg');
spm_jobman('run_nogui',matlabbatch);
end
end
end
%Modification Notes
%092217 Combined quantification and two PVc techniques
%092217 To Do: incorporate RobustPerf quantification/PVc
function [gCBF,settings]=asl_quantification(Perf,M0,mask,V_qCBF,settings,defaults)
f=@asl_quantification;
scrsz = get(0,'ScreenSize');
%Quantification
mean_Perf=mean(Perf,4);
buf=zeros(size(mean_Perf));
Slice=size(Perf,3);
fac=ceil(sqrt(Slice));
if settings.asl==1%PASL
buf((mask>0))=(100*0.9*mean_Perf((mask>0)))./(2*settings.eff*M0((mask>0))*(settings.tau/60000)*exp(-settings.w/settings.T1b));
else%CASL/pCASL
buf((mask>0))=(100*0.9*mean_Perf((mask>0))./(2*settings.eff*M0((mask>0))*(settings.T1b/60000)*(exp(-settings.w/settings.T1b)-exp(-(settings.tau+settings.w)/settings.T1b))));
end
if settings.WIP==1
buf=buf/10;
end
qCBF=mean(buf,4);
qCBF((qCBF<-10|qCBF>150))=0;buf((buf<-10|buf>150))=0;qCBF(isnan(qCBF)|isinf(qCBF))=0;
V_qCBF.fname=fullfile(settings.CBF_folder,sprintf('%s_%04d_qCBF.%s',settings.visit,settings.serNumber,settings.ext));
V_qCBF.descrip=sprintf('qCBFmap');
V_qCBF=spm_create_vol(V_qCBF);
V_qCBF=spm_write_vol(V_qCBF,qCBF);
gCBF=mean(nonzeros(qCBF));
%Code for displaying qCBFmaps--------------------------
for n=1:size(qCBF,3)
y=ceil(n/fac);
x=n-(y-1)*fac;
temp1((y-1)*size(qCBF,2)+1:y*size(qCBF,2),(x-1)*size(qCBF,1)+1:x*size(qCBF,1))=imrotate(qCBF(:,:,n).*mask(:,:,n),90);
end
fg=figure('Position',[500 scrsz(4) scrsz(3)*.25 scrsz(4)/2],'color','white','PaperPositionMode','auto','PaperType','usletter');
subplot(2,1,1);imagesc(temp1,[0 120]);colormap(jet);colorbar('vert');
title(['global CBF\_uncorr=',sprintf('%.2f ml/100g/min',gCBF)])
subplot(2,1,2);hist(nonzeros(qCBF),128);xlabel('qCBF (ml/100g/min)');ylabel('# voxels');title('Histogram of uncorr perfusion values');
saveas(fg,fullfile(settings.pdffolder,'globalCBF.pdf'));
if strcmp(settings.PVcmethod,'None')~=1
gCBF=PVcorrection(Perf, M0, settings);
end
end
function gGMCBF=PVcorrection(Perf,M0,settings)
%locate the relevant files
qCBFf=spm_select('FPList',settings.CBF_folder,'.*qCBF.nii$');qCBFf=qCBFf(1,:);
V_qCBF=spm_vol(qCBFf);
qCBF=spm_read_vols(V_qCBF);
meanEPI=spm_select('FPList',settings.CBF_folder,'^meanEPI.nii$');
mask=spm_read_vols(spm_vol(spm_select('FPList',settings.CBF_folder,'^FOVmask.nii$')));
head=spm_select('FPList',settings.CBF_folder,'^T1.nii$');
tissuefile=spm_select('FPList',settings.intfolder,'^rp.*T1.*nii');
GM=spm_read_vols(spm_vol(tissuefile(1,:)));WM=spm_read_vols(spm_vol(tissuefile(2,:)));
CSF=spm_read_vols(spm_vol(tissuefile(3,:)));
GM(mask<1)=0;WM(mask<1)=0;CSF(mask<1)=0;
switch settings.PVcmethod
case 'Asllani'
[GMdm, WMdm]=pvc_Asllani(Perf,GM,WM,CSF,mask,5,0);
[GMM0, WMM0]=pvc_Asllani(M0,GM,WM,CSF,mask,5,1);
qCBF_PVc=zeros(size(GMdm));tmpGM=qCBF_PVc;tmpWM=qCBF_PVc;
if settings.asl==1%PASL
tmpGM=100*0.98*mask.*mean(GMdm,4)./(2*settings.eff*mean(GMM0,4)*(settings.tau/60000)*exp(-settings.w/settings.T1b));
tmpWM=100*0.82*mask.*mean(WMdm,4)./(2*settings.eff*mean(WMM0,4)*(settings.tau/60000)*exp(-settings.w/settings.T1b));
else%CASL/pCASL
tmpGM=100*0.98*mask.*mean(GMdm,4)./(2*settings.eff*mean(GMM0,4)*(settings.T1b/60000)*(exp(-settings.w/settings.T1b)-exp(-(settings.tau+settings.w)/settings.T1b)));
tmpWM=100*0.82*mask.*mean(WMdm,4)./(2*settings.eff*mean(WMM0,4)*(settings.T1b/60000)*(exp(-settings.w/settings.T1b)-exp(-(settings.tau+settings.w)/settings.T1b)));
end
tmpGM(GM<0.01)=0;tmpGM(isnan(tmpGM)|isinf(tmpGM))=0;
tmpWM(WM<0.01)=0;tmpWM(isnan(tmpWM)|isinf(tmpWM))=0;
if settings.WIP==1, tmpGM=tmpGM/10;tmpWM=tmpWM/10;end
V_qCBF.fname=fullfile(settings.CBF_folder,sprintf('%s_%04d_GMqCBF_LRPVc.%s',settings.visit,settings.serNumber,settings.ext));
V_qCBF.descrip=sprintf('Pure GM qCBFmap with LR(Asllani) PVc');
V_qCBF=spm_create_vol(V_qCBF);
V_qCBF=spm_write_vol(V_qCBF,tmpGM);
V_qCBF.fname=fullfile(settings.CBF_folder,sprintf('%s_%04d_WMqCBF_LRPVc.%s',settings.visit,settings.serNumber,settings.ext));
V_qCBF.descrip=sprintf('Pure WM qCBFmap with LR(Asllani) PVc');
V_qCBF=spm_create_vol(V_qCBF);
V_qCBF=spm_write_vol(V_qCBF,tmpWM);
gCBF(2)=mean(nonzeros(tmpGM));
qCBF_PVc=tmpGM;
CBFfiles=spm_select('FPlist',settings.CBF_folder,'.*LRPVc.nii');
case 'PET'
GM((GM<0.3))=0;
qCBF_PVc=zeros(size(qCBF));
qCBF_PVc((GM>0))=qCBF((GM>0))./(GM((GM>0))+0.4*WM((GM>0)));
qCBF_PVc(qCBF_PVc<0|qCBF_PVc>200)=0;
gCBF(2)=mean(qCBF_PVc((GM>0)));
V_qCBF.fname=fullfile(settings.CBF_folder,sprintf('%s_%04d_qCBF_PETPVc.%s',settings.visit,settings.serNumber,settings.ext));
V_qCBF.descrip=sprintf('qCBFmap with PET PVc');
V_qCBF=spm_create_vol(V_qCBF);
V_qCBF=spm_write_vol(V_qCBF,qCBF_PVc);
CBFfiles=spm_select('FPlist',settings.CBF_folder,'.*PETPVc.nii');
end
fac=ceil(sqrt(size(qCBF,3)));
for n=1:size(qCBF,3)
y=ceil(n/fac);
x=n-(y-1)*fac;
temp1((y-1)*size(qCBF,2)+1:y*size(qCBF,2),(x-1)*size(qCBF,1)+1:x*size(qCBF,1))=imrotate(qCBF(:,:,n).*mask(:,:,n),90);
temp2((y-1)*size(qCBF_PVc,2)+1:y*size(qCBF_PVc,2),(x-1)*size(qCBF_PVc,1)+1:x*size(qCBF_PVc,1))=imrotate(qCBF_PVc(:,:,n).*mask(:,:,n),90);
end
V=spm_vol(qCBFf);
spm_create_vol(V);spm_write_vol(V,qCBF.*mask);
gGMCBF(1)=mean(nonzeros(qCBF));
gGMCBF(2)=mean(qCBF_PVc((GM>0)));
scrsz = get(0,'ScreenSize');
fg=figure('Position',[500 scrsz(4)/2 scrsz(3)*.5 scrsz(4)-100],'color','white','PaperPositionMode','auto','PaperType','usletter');
subplot(2,2,1);imagesc(temp1,[0 150]);colormap(jet);colorbar('vert'); title(['GMCBF\_uncorr=',sprintf('%.2f ml/100g/min',gGMCBF(1))])
subplot(2,2,2);imagesc(temp2,[0 150]);colormap(jet);colorbar('vert');title(['GMCBF\_PVc=',sprintf('%.2f ml/100g/min',gGMCBF(2))])
subplot(2,2,3);hist(nonzeros(qCBF),128);xlabel('qCBF (ml/100g/min)');ylabel('# voxels');title('Histogram of uncorr perfusion values');
subplot(2,2,4);hist(nonzeros(qCBF_PVc),128);xlabel('qCBF (ml/100g/min)');ylabel('# voxels');title('Histogram of PVc perfusion values');
saveas(fg,fullfile(settings.pdffolder,'globalCBFPVc.pdf'));
end