-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSincronia.cc
296 lines (282 loc) · 11.7 KB
/
Sincronia.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#include "SwitchML_m.h"
#include "JobDispatcher.h"
#include "ModelStats.h"
#include "TrainingProcess.h"
#include <unordered_map>
#include <queue>
#define FMT_HEADER_ONLY
#include "fmt/format.h"
using namespace omnetpp;
class Sincronia: public cSimpleModule {
private:
uint64_t chunk_size;
std::unordered_map<TensorKey, uint64_t> remaining_sizes { };
std::unordered_map<TensorKey, std::vector<CollectiveOperationRequest*>> requests_of_key { };
std::unordered_map<uint64_t, std::priority_queue<TensorKey>> queues_for_job { };
std::unordered_map<uint64_t, short> model_for_jid { };
JobDispatcher *job_dispatcher { };
void clean_resources_for_job(uint64_t);
void clean_resources_for_tensor(const TensorKey&);
void initialize() override;
void handleMessage(cMessage *msg) override;
void updatePendingTensors();
double get_weight(const TensorKey&);
unsigned StartCollectiveOperations();
std::deque<TensorKey> pending_tensors { };
std::unordered_map<TensorKey, unsigned> num_workers_of_active_tensor_key { };
std::unordered_map<uint64_t, TensorKey> active_tensor_for_jid { };
std::unordered_map<uint64_t, std::deque<TensorKey>> deferred_tensors { };
bool exclusive;
bool compression;
simsignal_t compressedSize;
simsignal_t uncompressedSize;
};
Define_Module(Sincronia);
void Sincronia::initialize() {
exclusive = par("exclusive");
chunk_size = par("chunk_size");
job_dispatcher = (JobDispatcher*) getModuleByPath("^.job_dispatcher");
compression = par("compression");
compressedSize = registerSignal("compressedSize");
uncompressedSize = registerSignal("uncompressedSize");
}
void Sincronia::clean_resources_for_tensor(const TensorKey &tensor_key) {
for (auto &req : requests_of_key[tensor_key]) {
delete req;
}
requests_of_key.erase(tensor_key);
remaining_sizes.erase(tensor_key);
}
void Sincronia::clean_resources_for_job(uint64_t jid) {
queues_for_job.erase(jid);
active_tensor_for_jid.erase(jid);
for (auto iterator = num_workers_of_active_tensor_key.begin();
iterator != num_workers_of_active_tensor_key.end();) {
if (iterator->first.job_id == jid) {
iterator = num_workers_of_active_tensor_key.erase(iterator);
} else {
++iterator;
}
}
}
double Sincronia::get_weight(const TensorKey &tensor_key) {
// remaining size
auto weighting_fn = this->par("weighting_fn").stdstringValue();
if (weighting_fn == "remaining_sizes_more") {
// the more remaining, the higher priority
return double(remaining_sizes[tensor_key])
/ double(
model_sizes[model_for_jid[tensor_key.job_id]][tensor_key.layer]);
} else if (weighting_fn == "remaining_sizes_less") {
// the less remaining, the higher priority
return 1.
- double(remaining_sizes[tensor_key])
/ double(
model_sizes[model_for_jid[tensor_key.job_id]][tensor_key.layer]);
} else if (weighting_fn == "layer") {
// front layers get higher priority
return 1.
- double(tensor_key.layer)
/ double(n_layers[model_for_jid[tensor_key.job_id]]);
} else if (weighting_fn == "idle") {
auto t = SimTime::ZERO;
for (auto req : requests_of_key[tensor_key]) {
auto tp = (TrainingProcess*) (req->getSenderModule());
if (!tp->gpu_start_idle_time.isZero()
&& simTime() > tp->gpu_start_idle_time) {
t += simTime() - tp->gpu_start_idle_time;
}
}
return t.dbl();
} else { // none
return 1.;
}
}
unsigned Sincronia::StartCollectiveOperations() {
if (pending_tensors.empty())
return 0;
unsigned started = 0;
int priority = 1; // the smaller, the higher priority, 1 is the highest
for (auto iterator = pending_tensors.begin();
iterator != pending_tensors.end();) {
auto &tensor_key = *iterator;
auto &requests = requests_of_key[tensor_key];
auto jid_to_add = tensor_key.job_id;
auto layer = tensor_key.layer;
if (active_tensor_for_jid.find(jid_to_add)
!= active_tensor_for_jid.end()) {
// already running a chunk for jid_to_add, just update priority
for (auto &req : requests) {
EV_DETAIL << "[CollectiveScheduler]\t" << simTime()
<< fmt::format(
"\tSincronia update priority Worker {} Job {} layer {}, size {} priority {}",
req->getWorker_id(), jid_to_add, layer,
req->getSize(), priority) << endl;
req->setPriority(priority);
auto update = req->dup();
update->setKind(14);
sendDirect(update,
getSimulation()->getModule(req->getWorker_id()),
"directin");
}
} else {
// add to active
started++;
auto next_chunk_id = requests[0]->getChunk_id() + 1;
bool last_chunk = next_chunk_id == requests[0]->getNum_chunks();
for (auto &req : requests) {
if (last_chunk) {
req->setSize(remaining_sizes[tensor_key]);
} // else size is already set as chunk_size
EV_DETAIL << "[CollectiveScheduler]\t" << simTime()
<< fmt::format(
"\tSincronia start Collective Operation Worker {} Job {} layer {}, chunk {}/{} size {} priority {}",
req->getWorker_id(), jid_to_add, layer,
next_chunk_id, req->getNum_chunks(),
req->getSize(), priority) << endl;
req->setPriority(priority);
if (compression && size_t(priority) > 1) {
if (req->getRank() == 0) {
emit(compressedSize, int(req->getSize()));
}
// compress everything except for priority==1
req->setKind(17);
EV_DETAIL << "[CollectiveScheduler]\t" << simTime()
<< fmt::format(
"\tSincronia compress Worker {} Job {} layer {}, size {} priority {}",
req->getWorker_id(), jid_to_add,
layer, req->getSize(), priority)
<< endl;
} else if (req->getRank() == 0) {
emit(uncompressedSize, int(req->getSize()));
}
sendDirect(req->dup(),
getSimulation()->getModule(req->getWorker_id()),
"directin");
req->setChunk_id(next_chunk_id);
}
active_tensor_for_jid[tensor_key.job_id] = tensor_key;
num_workers_of_active_tensor_key[tensor_key] = requests.size();
}
++iterator;
++priority;
}
return started;
}
void Sincronia::updatePendingTensors() {
std::unordered_map<TensorKey, double> weights { }; // tensor_key -> weight
for (auto &pair : queues_for_job) {
auto &pq = pair.second;
while (!pq.empty()) {
auto &tensor_key = pq.top();
if (remaining_sizes[tensor_key] == 0) {
// this tensor is done (or is running last chunk)!
pq.pop();
continue;
}
weights[tensor_key] = get_weight(tensor_key);
break; // while loop
}
}
// "running" tensors are in num_workers_of_active_tensor_key, so no worries
pending_tensors.clear();
if (weights.empty())
return;
// bssi
if (weights.size() > 1) {
job_dispatcher->bssi(pending_tensors, weights, remaining_sizes);
} else {
pending_tensors.push_back(weights.begin()->first);
}
#ifndef NDEBUG
EV_DEBUG << "after bssi:";
for (auto &tkey : pending_tensors) {
EV_DEBUG << " jid " << tkey.job_id << " layer " << tkey.layer;
}
EV_DEBUG << endl;
#endif
}
void Sincronia::handleMessage(cMessage *msg) {
switch (msg->getKind()) {
case 0: {
// CollectiveOperationRequest from TrainingProcess
auto request = (CollectiveOperationRequest*) (msg);
auto &tensor_key = request->getTensor_key();
auto &requests = requests_of_key[tensor_key];
requests.push_back(request);
if (requests.size() == request->getNum_workers_allocated()) {
auto size = request->getSize();
remaining_sizes[tensor_key] = size;
auto num_chunks = size / chunk_size + (size % chunk_size ? 1 : 0);
for (auto req : requests) {
req->setSize(chunk_size);
req->setNum_chunks(num_chunks);
}
// layers nearer the front (smaller index) gets higher priority
auto jid = tensor_key.job_id;
EV_DETAIL << "[CollectiveScheduler]\t" << simTime()
<< fmt::format(
"\tSincronia Job {} enqueue collective operation for layer {} size {} ",
jid, tensor_key.layer, size) << endl;
if (active_tensor_for_jid.find(jid)
== active_tensor_for_jid.end()) {
queues_for_job[jid].push(tensor_key);
} else {
deferred_tensors[jid].push_back(tensor_key);
}
model_for_jid[jid] = request->getModel();
updatePendingTensors();
StartCollectiveOperations();
}
break;
}
case 2: {
// CollectiveOperationRequest from Worker, meaning a collective operation is done
auto req = (CollectiveOperationRequest*) msg;
auto &tensor_key = req->getTensor_key();
auto jid = tensor_key.job_id;
auto &num_remaining_updates =
num_workers_of_active_tensor_key[tensor_key];
auto first_finished_worker = req->getNum_workers_allocated()
== num_remaining_updates;
if (first_finished_worker) {
// need to clean first because the first finished worker may soon send the next request
// before other workers report finished collective operation
if (req->getCompleted()) { // last chunk
remaining_sizes[tensor_key] = 0;
clean_resources_for_tensor(tensor_key);
} else {
remaining_sizes[tensor_key] -= chunk_size;
}
}
if (--num_remaining_updates == 0) {
EV_DEBUG << "Job " << jid << " layer " << tensor_key.layer
<< " done\n";
active_tensor_for_jid.erase(jid);
num_workers_of_active_tensor_key.erase(tensor_key);
auto &deque = deferred_tensors[jid];
auto &pq = queues_for_job[jid];
while (!deque.empty()) {
pq.push(deque.front());
deque.pop_front();
}
updatePendingTensors();
StartCollectiveOperations();
}
delete msg;
break;
}
case 5: {
auto job = (Job*) msg;
EV_DEBUG << "CollectiveScheduler cleans job resources for job "
<< job->getJob_id() << endl;
clean_resources_for_job(job->getJob_id());
delete msg;
break;
}
default:
delete msg;
EV_FATAL << "got unexpected message" << endl;
break;
}
}