-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnotes.txt
66 lines (47 loc) · 1.96 KB
/
notes.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
LCA l = ?f : num -> 'U. f zero = range ind_to_inner /\ !n<l. is_set_theory_model (f n) /\
?g : num -> 'U. g zero = f n /\ !m. g m subset g (suc m) /\ g m subset f (suc n)
-----
Ultimate desired theorem:
val Provable_def = Define`
Provable thy tm ⇔ (thy,[]) |- tm`
∀n:num.
Provable thy ``∀mem l. LCA mem l ⇒ ^^phi l ^(quote n)`` ⇒
∀mem l. LCA mem (SUC l) ⇒ ^phi l n
quote : num -> term
is_true tm ⇔
∃sig int val. termsem sig int val tm = True
LCA should satisfy:
LCA mem (SUC l) ==> is_true ``?mem. LCA mem ^l``
LCA mem l ==> is_set_theory mem
-------
... (was written on a sheet of paper in Vienna) ...
Tools:
mk_to_inner : hol_type -> term
makes the projection from an outer type to an inner type
type_of (mk_to_inner ty) = ty --> 'U
(actually: 'a --> 'U, but we only care about the instance at 'a = ty)
bool_to_inner = Boolean
fun_to_inner a_to_inner b_to_inner f =
Abstract (range a_to_inner) (range b_to_inner) (λx. b_to_inner (f (finv a_to_inner x)))`
mk_to_inner bool = bool_to_inner
mk_to_inner (a --> b) = fun_to_inner ^(mk_to_inner a) ^(mk_to_inner b)
mk_to_inner ty = to_inner [ty]
tag : hol_type -> 'U -> 'U
tag s x = tag t y ⇒ (s,x) = (t,y)
and tag s x is not a boolean or a function
and the image of a set is again a set
to_inner ty = tag [ty] o @f. ∃x. BIJ f UNIV {a | mem a x}
term_to_cert : term -> thm
suppose tm deeply embeds as [tm]
and type_of tm = ty
term_to_cert tm
produces
asms ⊢ termsem sig int val [tm] = ^(mk_to_inner ty) tm
where sig, int, val are variables, and
asms constrain them
in particular
(a) good_context (well-formedness of the sig int and val)
(b) instances of term constants appearing in tm have their intended values
(c) wf_to_inner assumptions for type variables and type constants appearing in tm
(d) term variables appearing in tm have their intended (outer) values
build_interpretation...