-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathparse.py
107 lines (102 loc) · 5.53 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from models import *
from data_utils import normalize
def parse_method(args, dataset, n, c, d, device):
if args.method == 'link':
model = LINK(n, c).to(device)
elif args.method == 'gcn':
if args.dataset == 'ogbn-proteins':
# Pre-compute GCN normalization.
dataset.graph['edge_index'] = normalize(dataset.graph['edge_index'])
model = GCN(in_channels=d,
hidden_channels=args.hidden_channels,
out_channels=c,
dropout=args.dropout,
save_mem=True,
use_bn=not args.no_bn).to(device)
else:
model = GCN(in_channels=d,
hidden_channels=args.hidden_channels,
out_channels=c,
num_layers=args.num_layers,
dropout=args.dropout,
use_bn=not args.no_bn).to(device)
elif args.method == 'mlp' or args.method == 'cs':
model = MLP(in_channels=d, hidden_channels=args.hidden_channels,
out_channels=c, num_layers=args.num_layers,
dropout=args.dropout).to(device)
elif args.method == 'sgc':
if args.cached:
model = SGC(in_channels=d, out_channels=c, hops=args.hops).to(device)
else:
model = SGCMem(in_channels=d, out_channels=c,
hops=args.hops).to(device)
elif args.method == 'gprgnn':
model = GPRGNN(d, args.hidden_channels, c, alpha=args.gpr_alpha).to(device)
elif args.method == 'appnp':
model = APPNP_Net(d, args.hidden_channels, c, alpha=args.gpr_alpha).to(device)
elif args.method == 'gat':
model = GAT(d, args.hidden_channels, c, num_layers=args.num_layers,
dropout=args.dropout, heads=args.gat_heads).to(device)
elif args.method == 'lp':
mult_bin = args.dataset=='ogbn-proteins'
model = MultiLP(c, args.lp_alpha, args.hops, mult_bin=mult_bin)
elif args.method == 'mixhop':
model = MixHop(d, args.hidden_channels, c, num_layers=args.num_layers,
dropout=args.dropout, hops=args.hops).to(device)
elif args.method == 'gcnjk':
model = GCNJK(d, args.hidden_channels, c, num_layers=args.num_layers,
dropout=args.dropout, jk_type=args.jk_type).to(device)
elif args.method == 'gatjk':
model = GATJK(d, args.hidden_channels, c, num_layers=args.num_layers,
dropout=args.dropout, heads=args.gat_heads,
jk_type=args.jk_type).to(device)
elif args.method == 'h2gcn':
model = H2GCN(d, args.hidden_channels, c, dataset.graph['edge_index'],
dataset.graph['num_nodes'],
num_layers=args.num_layers, dropout=args.dropout,
num_mlp_layers=args.num_mlp_layers).to(device)
else:
raise ValueError('Invalid method')
return model
def parser_add_main_args(parser):
parser.add_argument('--dataset', type=str, default='fb100')
parser.add_argument('--sub_dataset', type=str, default='')
parser.add_argument('--hidden_channels', type=int, default=32)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--method', '-m', type=str, default='link')
parser.add_argument('--epochs', type=int, default=500)
parser.add_argument('--cpu', action='store_true')
parser.add_argument('--weight_decay', type=float, default=1e-3)
parser.add_argument('--display_step', type=int,
default=1, help='how often to print')
parser.add_argument('--hops', type=int, default=1,
help='power of adjacency matrix for certain methods')
parser.add_argument('--num_layers', type=int, default=2,
help='number of layers for deep methods')
parser.add_argument('--runs', type=int, default=1,
help='number of distinct runs')
parser.add_argument('--cached', action='store_true',
help='set to use faster sgc')
parser.add_argument('--gat_heads', type=int, default=8,
help='attention heads for gat')
parser.add_argument('--lp_alpha', type=float, default=.1,
help='alpha for label prop')
parser.add_argument('--gpr_alpha', type=float, default=.1,
help='alpha for gprgnn')
parser.add_argument('--directed', action='store_true',
help='set to not symmetrize adjacency')
parser.add_argument('--jk_type', type=str, default='max', choices=['max', 'lstm', 'cat'],
help='jumping knowledge type')
parser.add_argument('--rocauc', action='store_true',
help='set the eval function to rocauc')
parser.add_argument('--num_mlp_layers', type=int, default=1,
help='number of mlp layers in h2gcn')
parser.add_argument('--print_prop', action='store_true',
help='print proportions of predicted class')
parser.add_argument('--train_prop', type=float, default=.5,
help='training label proportion')
parser.add_argument('--valid_prop', type=float, default=.25,
help='validation label proportion')
parser.add_argument('--rand_split', action='store_true', help='use random splits')
parser.add_argument('--no_bn', action='store_true', help='do not use batchnorm')