-
Notifications
You must be signed in to change notification settings - Fork 537
/
Copy pathrun_placesCNN_basic.py
66 lines (55 loc) · 2.03 KB
/
run_placesCNN_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# PlacesCNN for scene classification
#
# by Bolei Zhou
# last modified by Bolei Zhou, Dec.27, 2017 with latest pytorch and torchvision (upgrade your torchvision please if there is trn.Resize error)
import torch
from torch.autograd import Variable as V
import torchvision.models as models
from torchvision import transforms as trn
from torch.nn import functional as F
import os
from PIL import Image
# th architecture to use
arch = 'resnet18'
# load the pre-trained weights
model_file = '%s_places365.pth.tar' % arch
if not os.access(model_file, os.W_OK):
weight_url = 'http://places2.csail.mit.edu/models_places365/' + model_file
os.system('wget ' + weight_url)
model = models.__dict__[arch](num_classes=365)
checkpoint = torch.load(model_file, map_location=lambda storage, loc: storage)
state_dict = {str.replace(k,'module.',''): v for k,v in checkpoint['state_dict'].items()}
model.load_state_dict(state_dict)
model.eval()
# load the image transformer
centre_crop = trn.Compose([
trn.Resize((256,256)),
trn.CenterCrop(224),
trn.ToTensor(),
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# load the class label
file_name = 'categories_places365.txt'
if not os.access(file_name, os.W_OK):
synset_url = 'https://raw.githubusercontent.com/csailvision/places365/master/categories_places365.txt'
os.system('wget ' + synset_url)
classes = list()
with open(file_name) as class_file:
for line in class_file:
classes.append(line.strip().split(' ')[0][3:])
classes = tuple(classes)
# load the test image
img_name = '12.jpg'
if not os.access(img_name, os.W_OK):
img_url = 'http://places.csail.mit.edu/demo/' + img_name
os.system('wget ' + img_url)
img = Image.open(img_name)
input_img = V(centre_crop(img).unsqueeze(0))
# forward pass
logit = model.forward(input_img)
h_x = F.softmax(logit, 1).data.squeeze()
probs, idx = h_x.sort(0, True)
print('{} prediction on {}'.format(arch,img_name))
# output the prediction
for i in range(0, 5):
print('{:.3f} -> {}'.format(probs[i], classes[idx[i]]))