-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathsample_refNet_initial.m
143 lines (122 loc) · 5.13 KB
/
sample_refNet_initial.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
function [net] = sample_refNet_initial(varargin)
% sample code for initializing the refNet1 for mini-places challenge
% adapted from matconvnet-1.0-beta14/matconvnet-1.0-beta14/examples/cnn_imagenet_init.m
opts.scale = 1 ;
opts.initBias = 0.1 ;
opts.weightDecay = 1 ;
opts.weightInitMethod = 'gaussian' ;
opts.model = 'refNet1' ;
opts.batchNormalization = false ;
opts = vl_argparse(opts, varargin) ;
% Define layers
net.normalization.imageSize = [126, 126, 3] ;
switch opts.model
case 'refNet1'
net = refNet1(net, opts) ;
otherwise
error('Unknown model ''%s''', opts.model) ;
end
switch lower(opts.weightInitMethod)
case {'xavier', 'xavierimproved'}
net.layers{end}.weights{1} = net.layers{end}.weights{1} / 10 ;
end
net.layers{end+1} = struct('type', 'softmaxloss', 'name', 'loss') ;
net.normalization.border = 128 - net.normalization.imageSize(1:2) ;
net.normalization.interpolation = 'bicubic' ;
net.normalization.averageImage = [] ;
net.normalization.keepAspect = true ;
end
% --------------------------------------------------------------------
function net = add_block(net, opts, id, h, w, in, out, stride, pad, init_bias)
% --------------------------------------------------------------------
info = vl_simplenn_display(net) ;
fc = (h == info.dataSize(1,end) && w == info.dataSize(2,end)) ;
if fc
name = 'fc' ;
else
name = 'conv' ;
end
net.layers{end+1} = struct('type', 'conv', 'name', sprintf('%s%s', name, id), ...
'weights', {{init_weight(opts, h, w, in, out, 'single'), zeros(out, 1, 'single')}}, ...
'stride', stride, ...
'pad', pad, ...
'learningRate', [1 2], ...
'weightDecay', [opts.weightDecay 0]) ;
if opts.batchNormalization
net.layers{end+1} = struct('type', 'bnorm', 'name', sprintf('bn%d',id), ...
'weights', {{ones(out, 1, 'single'), zeros(out, 1, 'single')}}, ...
'learningRate', [2 1], ...
'weightDecay', [0 0]) ;
end
net.layers{end+1} = struct('type', 'relu', 'name', sprintf('relu%s',id)) ;
end
% -------------------------------------------------------------------------
function weights = init_weight(opts, h, w, in, out, type)
% -------------------------------------------------------------------------
% See K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
% rectifiers: Surpassing human-level performance on imagenet
% classification. CoRR, (arXiv:1502.01852v1), 2015.
switch lower(opts.weightInitMethod)
case 'gaussian'
sc = 0.01/opts.scale ;
weights = randn(h, w, in, out, type)*sc;
case 'xavier'
sc = sqrt(3/(h*w*in)) ;
weights = (rand(h, w, in, out, type)*2 - 1)*sc ;
case 'xavierimproved'
sc = sqrt(2/(h*w*out)) ;
weights = randn(h, w, in, out, type)*sc ;
otherwise
error('Unknown weight initialization method''%s''', opts.weightInitMethod) ;
end
end
% --------------------------------------------------------------------
function net = add_norm(net, opts, id)
% --------------------------------------------------------------------
if ~opts.batchNormalization
net.layers{end+1} = struct('type', 'normalize', ...
'name', sprintf('norm%s', id), ...
'param', [5 1 0.0001/5 0.75]) ;
end
end
% --------------------------------------------------------------------
function net = add_dropout(net, opts, id)
% --------------------------------------------------------------------
if ~opts.batchNormalization
net.layers{end+1} = struct('type', 'dropout', ...
'name', sprintf('dropout%s', id), ...
'rate', 0.5) ;
end
end
% --------------------------------------------------------------------
function net = refNet1(net, opts)
% 3 convnet + 1 FC + 1 softmax
% --------------------------------------------------------------------
%% add_block(net, opts, id, h, w, in, out, stride, pad, init_bias)
net.layers = {} ;
net = add_block(net, opts, '1', 8, 8, 3, 64, 2, 0) ;
net = add_norm(net, opts, '1') ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '2', 5, 5, 32, 96, 1, 2) ;
net = add_norm(net, opts, '2') ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '3', 3, 3, 96, 128, 1, 1) ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '4', 6, 6, 128, 512, 1, 0) ;
net = add_dropout(net, opts, '4') ;
net = add_block(net, opts, '5', 1, 1, 512, 100, 1, 0) ;
net.layers(end) = [] ;
if opts.batchNormalization, net.layers(end) = [] ; end
end