-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgroup_intrusion_interp.py
134 lines (120 loc) · 3.92 KB
/
group_intrusion_interp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import pickle
from scipy import stats
import argparse
def case_to_key(dset, dset_idx, st_pos):
if dset == "eth":
if dset_idx == 0:
if st_pos[0] == 5:
return 1
else:
return 0
elif dset_idx == 1:
if st_pos[0] == 2:
return 2
else:
return 3
else:
raise Exception("Dataset doesn't exist")
elif dset == "ucy":
if dset_idx == 0:
if st_pos[0] == 7.5:
return 5
else:
return 4
elif dset_idx == 1:
if st_pos[0] == 7.5:
return 7
else:
return 6
elif dset_idx == 2:
if st_pos[0] == 7.5:
return 9
else:
return 8
else:
raise Exception("Dataset doesn't exist")
else:
raise Exception("Dataset doesn't exist")
def interp_rst(fname):
intru_dir = "group_intrusion_rst/"
with open(intru_dir + fname, 'rb') as f:
data = pickle.load(f)
num_scenes = 10
rst = [[], [], [], [], [], [], [], [], [], []]
for d in data:
idx = case_to_key(d[0][0], d[0][1], d[0][2])
if (np.sum(np.array(d[1]))) > 0:
rst[idx].append(0)
else:
rst[idx].append(1)
data_dir = "results/"
with open(data_dir + fname, 'rb') as f:
data = pickle.load(f)
for d in data:
idx = case_to_key(d[0][0], d[0][1], d[0][2])
if (d[1][0] == 0):
rst[idx].append(0)
for i in range(num_scenes):
print(round(np.mean(np.array(rst[i])) * 100, 2), end=' ')
print()
return rst
x = input("Reactive Agents? (y/n): ")
if (x == 'y'):
react_flag = True
else:
react_flag = False
parser = argparse.ArgumentParser()
parser.add_argument('--policy1', type=int)
parser.add_argument('--policy2', type=int)
args = parser.parse_args()
if not ((args.policy1 >= 0) and (args.policy1 <= 5) and
(args.policy2 >= 0) and (args.policy2 <= 5)):
raise Exception('Policy number can only be 0, 1, 2, 3, 4 or 5!')
if not react_flag:
experiments = ["ped_nopred.txt",
"ped_linear.txt",
"ped_sgan.txt",
"group_nopred.txt",
"group_auto.txt",
"group_auto_laser.txt"]
else:
experiments = ["ped_nopred_react.txt",
"ped_linear_react.txt",
"ped_sgan_react.txt",
"group_nopred_react.txt",
"group_auto_react.txt",
"group_auto_laser_react.txt"]
all_results = []
for exp in experiments:
print(exp)
rst = interp_rst(exp)
all_results.append(rst)
print("=================================================")
p_threshold = 0.05
set1 = [args.policy1]
set2 = [args.policy2]
num_sets = 10
for i in set1:
for j in set2:
data1 = all_results[i]
data2 = all_results[j]
p_values = []
for k in range(num_sets):
if k == 0:
all_data1 = data1[k]
all_data2 = data2[k]
else:
all_data1 += data1[k]
all_data2 += data2[k]
cp_rst = stats.mannwhitneyu(data1[k], data2[k], alternative="two-sided")
#cp_rst = stats.ttest_ind(data_set1, data_set2)
p_values.append(round(cp_rst.pvalue, 4))
print(experiments[i] + " VS " + experiments[j])
print("Flow: ", p_values[::2])
print("Cross: ", p_values[1::2])
print("Flow (p<"+str(p_threshold)+"?): ", np.array(p_values[::2]) < p_threshold)
print("Cross (p<"+str(p_threshold)+"?): ", np.array(p_values[1::2]) < p_threshold)
cp_rst = stats.mannwhitneyu(all_data1, all_data2, alternative="two-sided")
print(round(cp_rst.pvalue, 4))
print("==============================================")