-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgeneral_helpers.py
429 lines (391 loc) · 15.7 KB
/
general_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import cv2
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from img_process import DrawGroupShape
from grouping import Grouping
from group_shape_generation import GroupShapeGeneration
import copy
# PRE-PROCESSING:
# Gets input options from user
def get_flags():
x = input("Groups? (y/n): ")
group_flag = False
laser_flag = False
pred_flag = False
react_flag = False
pred_method = None
if(x=='y'):
group_flag = True
x = input("Laser Scans? (y/n): ")
if(x=='y'):
laser_flag = True
x = input("Prediction? (y/n): ")
if(x=='y'):
pred_flag = True
if (group_flag):
pred_method = "auto"
else:
x = input("sgan/linear (1/2): ")
x = int(x)
if(x==1):
pred_method = "sgan"
elif(x==2):
pred_method = "linear"
else:
pred_method = "nopred"
x = input("Reactive Agents? (y/n): ")
if (x == 'y'):
react_flag = True
return (group_flag, laser_flag, pred_flag, react_flag,
pred_method)
def convert_dataset_id(dataset, dataset_idx):
if (dataset == 'eth') and (dataset_idx == 0):
return 'eth', 0
if (dataset == 'eth') and (dataset_idx == 1):
return 'hotel', 1
if (dataset == 'ucy') and (dataset_idx == 0):
return 'zara1', 2
if (dataset == 'ucy') and (dataset_idx == 1):
return 'zara2', 3
if (dataset == 'ucy') and (dataset_idx == 2):
return 'univ', 4
raise Exception('impossible dataset names/idx')
# for creating a pedestrian dictionary
def ped_dicts(filename):
file = open(filename,'r')
lines = file.readlines()
dictionary = {}
# [frame_number pedestrian_ID pos_x pos_z pos_y v_x v_z v_y ]
ped_ids = {}
for line in lines:
curr = line.split()
frame_id = float(curr[0])
x_pos = float(curr[2])
y_pos = float(curr[4])
pedestrian_id = float(curr[1])
if frame_id in dictionary:
dictionary[frame_id].append([x_pos, y_pos])
else:
dictionary[frame_id] = [[x_pos, y_pos]]
if pedestrian_id in ped_ids:
ped_ids[pedestrian_id].append([x_pos, y_pos])
else:
ped_ids[pedestrian_id] = [[x_pos, y_pos]]
file.close()
return dictionary, ped_ids
# VISUALIZATION:
def draw_individual_space(pos, vel, const):
num_ped = np.shape(pos)[0]
all_boundary = []
for i in range(num_ped):
boundary = GroupShapeGeneration.draw_social_shapes([pos[i]], [vel[i]], const)
boundary.append(boundary[0])
all_boundary.append(np.array(boundary))
return all_boundary
def anim_frame(groups, pred, laser, occupied_points, obs_vel, ped_pos, scan_pts, start_config, robot_path, goal_config, has_ped, const, time_steps=None):
curr_frame = []
curr_frame.append(plt.scatter(start_config[0], start_config[1], c='g', s=10))
curr_frame.append(plt.scatter(robot_path[:, 0], robot_path[:, 1], c='y', s=10))
curr_frame.append(plt.scatter(goal_config[0], goal_config[1], c='m', s=10))
if has_ped:
if(groups):
if laser:
curr_frame.append(plt.scatter(scan_pts[:, 0], scan_pts[:, 1], c='y', s=10))
if pred:
group_boundaries = occupied_points[0]
else:
group_boundaries = occupied_points
curr_frame.append(plt.scatter(group_boundaries[:, 0],
group_boundaries[:, 1], c='k', s=3))
"""
if pred:
for i in range(time_steps):
group_boundaries = occupied_points[1 + i]
curr_frame.append(plt.scatter(group_boundaries[:, 0],
group_boundaries[:, 1], c='b', s=3))
"""
else:
if pred:
boundary = draw_individual_space(occupied_points[:, 0, :],
obs_vel[:, 0, :], const)
for bdry in boundary:
curr_frame += plt.plot(bdry[:, 0], bdry[:, 1], c='k', lw=3)
"""
for i in range(time_steps):
boundary = draw_individual_space(occupied_points[:, i + 1, :],
obs_vel[:, i + 1, :], const)
for bdry in boundary:
curr_frame += plt.plot(bdry[:, 0], bdry[:, 1], c='b', lw=3)
"""
else:
boundary = draw_individual_space(occupied_points, obs_vel, const)
boundary = np.array(boundary)
curr_frame.append(plt.scatter(boundary[:, 0], boundary[:, 1], c='k', s=3))
curr_frame.append(plt.scatter(ped_pos[:, 0], ped_pos[:, 1], c='r', s=10))
return curr_frame
def visualize_peds(ped_pos,pred):
if(pred):
for tmp in ped_pos:
curr = tmp[0]
next = tmp[1:]
plt.scatter(curr[0], curr[1], c='r')
plt.scatter(next[:, 0], next[:, 1], c='y')
else:
plt.scatter(ped_pos[:,0],ped_pos[:,1],c='r')
# PROPAGATION:
def linear_propagate_peds_once(curr, vel, dt):
curr[0]+=vel[0]*dt
curr[1]+=vel[1]*dt
return curr
def create_model_input(msg,frame,dt=0.1,length=8):
curr_frame_people = msg.video_position_matrix[frame]
curr_frame_velocity = msg.video_velocity_matrix[frame]
num_ppl = np.shape(curr_frame_people)[0]
ped_ids = []
idx2id = {}
for i in range(num_ppl):
id = msg.video_pedidx_matrix[frame][i]
ped_ids.append(id)
idx2id[i] = id
ans = np.zeros((num_ppl,length,2),dtype=np.float32)
ans_vel = np.zeros((num_ppl,length,2),dtype=np.float32)
start_frame = frame - length + 1
for i in range(num_ppl):
start_frame_i = msg.people_start_frame[idx2id[i]]
# curr_start = max(start_frame,start_frame_i)
if (start_frame_i <= start_frame):
curr_start = start_frame
else:
curr_start = start_frame_i
curr_vel_i = msg.people_velocity_complete[idx2id[i]][curr_start - start_frame_i]
for j in range(curr_start,frame):
ans[i][j-start_frame][0] = msg.people_coords_complete[idx2id[i]][j-start_frame_i][0]
ans[i][j-start_frame][1] = msg.people_coords_complete[idx2id[i]][j-start_frame_i][1]
ans_vel[i][j-start_frame][0]=msg.people_velocity_complete[idx2id[i]][j-start_frame_i][0]
ans_vel[i][j-start_frame][1]=msg.people_velocity_complete[idx2id[i]][j-start_frame_i][1]
ans[i][length - 1][0] = curr_frame_people[i][0]
ans[i][length - 1][1] = curr_frame_people[i][1]
ans_vel[i][length - 1][0] = curr_frame_velocity[i][0]
ans_vel[i][length - 1][1] = curr_frame_velocity[i][1]
for k in range(curr_start-1,start_frame-1,-1):
ans[i][k-start_frame][0] = ans[i][k-start_frame+1][0] - curr_vel_i[0]*dt
ans[i][k-start_frame][1] = ans[i][k-start_frame+1][1] - curr_vel_i[1]*dt
ans_vel[i][k-start_frame][0] = curr_vel_i[0]
ans_vel[i][k-start_frame][1] = curr_vel_i[1]
return ans, ans_vel
def propagate_peds(msg, frame, dt, tf,one_step_propagater=linear_propagate_peds_once):
pos_matrix = np.array(msg.video_position_matrix[frame])
vel_matrix = np.array(msg.video_velocity_matrix[frame])
num_ppl = np.shape(pos_matrix)[0]
time_steps = int(tf/dt)
ans = []
for i in range(num_ppl):
tmp = [pos_matrix[i]]
vel = vel_matrix[i]
curr = pos_matrix[i]
for j in range(time_steps):
next = one_step_propagater(np.copy(curr), vel, dt)
curr = next
tmp.append(np.copy(curr))
ans.append(tmp)
return np.array(ans)
def advance(current_pos,next_pos,v,dt):
[dy,dx] = [(next_pos[1] - current_pos[1]), (next_pos[0] - current_pos[0])]
slope_angle = np.arctan2(dy,dx)
vx = v*np.cos(slope_angle)
vy = v*np.sin(slope_angle)
dx = vx*dt
dy = vy*dt
current_pos = list(current_pos)
current_pos[0]+=dx
current_pos[1]+=dy
return current_pos
# GENERATE PATH:
def generate_straight_path(start_config, goal_config, step_size):
start_config = np.array(start_config)
goal_config = np.array(goal_config)
dist = np.linalg.norm(goal_config-start_config)
if(dist==0):
return start_config, 0
steps = dist//step_size + 1
waypoints = np.array([np.linspace(start_config[i], goal_config[i], int(steps)) for i in range(2)]).transpose()
return waypoints, dist
#COLLISION CHECKERS:
def get_min_ped_dist(ped_poses, config):
min_dist = 10000
for pos in ped_poses:
dist = ((pos[0]-config[0])**2 + (pos[1]-config[1])**2)**0.5
if(dist<=min_dist):
min_dist = dist
return min_dist
def path_checker(start_config, goal_config, ped_pos, step_size, thresh, collision_checker, path_generator=generate_straight_path):
path, length = path_generator(start_config,goal_config,step_size)
if length==0:
return 0, 0
num_collisions = collision_checker(ped_pos,path,thresh)
return num_collisions, length
def at_goal(start_config, end_config, final_thresh):
diff = np.array(end_config) - np.array(start_config)
dist = np.linalg.norm(diff, ord=2)
if(dist<final_thresh):
#print("Within threshold of goal, current position = ", start_config)
return True
else:
return False
# FIND LEAST DISTANCE BETWEEN CONFIG AND POINTS
def find_least_dist(config, points):
if len(points) == 0:
return 1e+9, None
diff = points - config
dist = np.linalg.norm(diff, axis=1)
return np.min(dist), np.argmin(dist)
# COMBINE CURRENT AND PREDICTED PEDESTRIAN POSITIONS
def combine_current_and_predicted_pos(curr_peds, predicted):
num_ppl = np.shape(curr_peds)[0]
time_steps = np.shape(predicted)[1]
current = np.reshape(curr_peds,(num_ppl,1,2))
ans = current.tolist()
predicted = predicted.tolist()
for i in range(num_ppl):
for j in range(time_steps):
ans[i].append(predicted[i][j])
return np.array(ans)
# Special coordinate transform from pixel to metric
def inv_coordinate_transform(msg, vertices):
if msg.dataset == 'ucy':
tmp = copy.deepcopy(vertices[0,:])
vertices[0,:] = vertices[1, :] - msg.frame_width / 2
vertices[1,:] = msg.frame_height / 2 - tmp
vertices = np.append(vertices, np.ones((1, np.shape(vertices)[1])), axis=0)
vertices = np.matmul(msg.H, vertices)
vertices = [vertices[0,:] / vertices[2,:], vertices[1,:] / vertices[2,:]]
return vertices
# GROUP BASED OPERATIONS
def get_frame_groups(msg, positions, velocities, laser_flag, const):
if (msg.dataset == "ucy") and (msg.flag == 2):
pos = 1.5
ori = 15
vel = 0.5
params = {'position_threshold': pos,
'orientation_threshold': ori / 180.0 * np.pi,
'velocity_threshold': vel,
'velocity_ignore_threshold': 0.5}
group_ids = Grouping.grouping(positions, velocities, params = params)
else:
group_ids = Grouping.grouping(positions, velocities)
group_vertices = GroupShapeGeneration.draw_all_social_spaces(group_ids, positions, velocities,
laser_flag, const)
dgs = DrawGroupShape(msg)
canvas = np.zeros((msg.frame_height, msg.frame_width, 3), dtype=np.uint8)
for v in group_vertices:
canvas = dgs.draw_group_shape(v, canvas, center=False, aug=False)
img = canvas[:, :, 0] / 255
return img
def frame_to_vertices(msg, frame):
laplacian = np.array([[0,-1,0],[-1,4,-1],[0,-1,0]])
frame = signal.convolve2d(frame, laplacian, mode='same')
frame = np.clip(np.abs(frame), 0, 1)
vertices = np.array(np.nonzero(frame))
vertices = inv_coordinate_transform(msg, vertices)
"""
for i in range(1, msg.frame_height - 1):
for j in range(1, msg.frame_width - 1):
if (frame[i, j] == 1) and (not (
(frame[i-1, j] == 1) and
(frame[i, j-1] == 1) and
(frame[i+1, j] == 1) and
(frame[i, j+1] == 1))):
coord = np.array([[i], [j], [1.0]], dtype=np.float32)
coord = np.matmul(msg.H, coord)
vertices.append([coord[0][0] / coord[2][0], coord[1][0] / coord[2][0]])
"""
return np.transpose(np.array(vertices), (1,0))
# Simulator Helper Functions
def get_pref_velocity(pos, goal, spd_limit):
vel = np.array(goal) - np.array(pos)
dist = np.linalg.norm(vel)
if not (dist == 0):
vel = vel / np.linalg.norm(vel) * spd_limit
else:
vel = [0, 0]
return (vel[0], vel[1])
# Metrics Related
def estimate_path_length(path):
path = np.array(path)
rel_path = path[1:, :] - path[:-1, :]
return np.sum(np.linalg.norm(rel_path, axis=1))
def estimate_path_irregularity(path):
path = np.array(path)
rel_path = path[1:, :] - path[:-1, :]
rel_ang = np.arctan2(rel_path[:, 1], rel_path[:, 0])
if len(rel_ang) < 2:
return 0
else:
change_ang = np.abs(((rel_ang[1:] - rel_ang[:-1]) + np.pi) % (2 * np.pi) - np.pi)
return np.mean(change_ang)
# Simulate Laser Scans
def ped_to_scans(robo_pos, ped_pos, ped_vel):
num_ped = len(ped_pos)
# SICK LMS511 2D Lidar
ang_res = 0.25 * np.pi / 180
det_range = 40 #Basically Inf
noise_limit = 0.05
ped_radius = 0.5
r_sq = ped_radius ** 2
laser_pos = []
laser_vel = []
ang = 0
while ang < (2 * np.pi):
if not (ang % (np.pi / 2) == 0):
min_dist = det_range
laser_x = None
laser_y = None
min_idx = None
for i in range(num_ped):
a = ped_pos[i][0] - robo_pos[0]
b = ped_pos[i][1] - robo_pos[1]
A = 1 + np.tan(ang) ** 2
B = -2 * (a + b * np.tan(ang))
C = a ** 2 + b ** 2 - r_sq
check_root = round(B ** 2 - 4 * A * C, 12)
if check_root >= 0:
x1 = (-B - np.sqrt(check_root)) / (2 * A)
y1 = x1 * np.tan(ang)
x2 = (-B + np.sqrt(check_root)) / (2 * A)
y2 = x2 * np.tan(ang)
mag1 = np.sqrt(x1 ** 2 + y1 ** 2)
mag2 = np.sqrt(x2 ** 2 + y2 ** 2)
if mag1 < mag2:
append_x = x1
append_y = y1
dist = mag1
else:
append_x = x2
append_y = y2
dist = mag2
noise = np.random.uniform(-noise_limit, noise_limit)
append_x += noise * np.cos(ang)
append_y += noise * np.sin(ang)
if dist < min_dist:
min_dist = dist
min_idx = i
laser_x = append_x + robo_pos[0]
laser_y = append_y + robo_pos[1]
if not (laser_x == None):
laser_pos.append([laser_x, laser_y])
laser_vel.append([ped_vel[min_idx][0], ped_vel[min_idx][1]])
ang += ang_res
return np.array(laser_pos), np.array(laser_vel)
def ped_series_to_scans(robo_pos, ped_pos_series, ped_vel_series):
# output time X pts X coord
time_steps = np.shape(ped_pos_series)[1]
pos_series = []
vel_series = []
for i in range(time_steps):
pos_scan, vel_scan = ped_to_scans(robo_pos,
ped_pos_series[:, i, :],
ped_vel_series[:, i, :])
pos_series.append(pos_scan)
vel_series.append(vel_scan)
return pos_series, vel_series