-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathMPC_helpers.py
243 lines (215 loc) · 10.1 KB
/
MPC_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
import matplotlib.pyplot as plt
from img_process import DrawGroupShape
from grouping_helpers import visualize_groups
from general_helpers import find_least_dist, inv_coordinate_transform
from group_shape_generation import GroupShapeGeneration as GSG
interval = 1
# GENERATE ROLLOUTS
def generate_rollouts(start_config, time_horizon, num_rollouts, vel):
len_horizon = np.shape(time_horizon)[0]
angles = np.linspace(np.radians(-180), np.radians(180), num_rollouts, endpoint=True)
rollouts = np.zeros((num_rollouts * 9, np.shape(time_horizon)[0], 2), dtype=np.float32)
rollouts[:, 0] = start_config
dt = time_horizon[1] - time_horizon[0]
R1 = vel * dt * (len_horizon - 1) / (np.pi / 2)
for i in range(1, len_horizon):
rollouts[:num_rollouts, i, 0] = start_config[0] + (vel * dt * i * np.sin(angles[:]))
rollouts[:num_rollouts, i, 1] = start_config[1] + (vel * dt * i * np.cos(angles[:]))
rollouts[num_rollouts:(2*num_rollouts), i, 0] = \
start_config[0] + (2/3 * vel * dt * i * np.sin(angles[:]))
rollouts[num_rollouts:(2*num_rollouts), i, 1] = \
start_config[1] + (2/3 * vel * dt * i * np.cos(angles[:]))
rollouts[(2*num_rollouts):(3*num_rollouts), i, 0] = \
start_config[0] + (1/3 * vel * dt * i * np.sin(angles[:]))
rollouts[(2*num_rollouts):(3*num_rollouts), i, 1] = \
start_config[1] + (1/3 * vel * dt * i * np.cos(angles[:]))
ang = (vel * dt * i) / (2 * R1)
L = 2 * R1 * np.sin(ang)
rollouts[(3*num_rollouts):(4*num_rollouts), i, 0] = \
start_config[0] + (L * np.sin(angles[:] + ang))
rollouts[(3*num_rollouts):(4*num_rollouts), i, 1] = \
start_config[1] + (L * np.cos(angles[:] + ang))
ang = (2/3 * vel * dt * i) / (2 * R1)
L = 2 * R1 * np.sin(ang)
rollouts[(4*num_rollouts):(5*num_rollouts), i, 0] = \
start_config[0] + (L * np.sin(angles[:] + ang))
rollouts[(4*num_rollouts):(5*num_rollouts), i, 1] = \
start_config[1] + (L * np.cos(angles[:] + ang))
ang = (1/3 * vel * dt * i) / (2 * R1)
L = 2 * R1 * np.sin(ang)
rollouts[(5*num_rollouts):(6*num_rollouts), i, 0] = \
start_config[0] + (L * np.sin(angles[:] + ang))
rollouts[(5*num_rollouts):(6*num_rollouts), i, 1] = \
start_config[1] + (L * np.cos(angles[:] + ang))
ang = (vel * dt * i) / (2 * R1)
L = 2 * R1 * np.sin(ang)
rollouts[(6*num_rollouts):(7*num_rollouts), i, 0] = \
start_config[0] + (L * np.sin(angles[:] - ang))
rollouts[(6*num_rollouts):(7*num_rollouts), i, 1] = \
start_config[1] + (L * np.cos(angles[:] - ang))
ang = (2/3 * vel * dt * i) / (2 * R1)
L = 2 * R1 * np.sin(ang)
rollouts[(7*num_rollouts):(8*num_rollouts), i, 0] = \
start_config[0] + (L * np.sin(angles[:] - ang))
rollouts[(7*num_rollouts):(8*num_rollouts), i, 1] = \
start_config[1] + (L * np.cos(angles[:] - ang))
ang = (1/3 * vel * dt * i) / (2 * R1)
L = 2 * R1 * np.sin(ang)
rollouts[(8*num_rollouts):, i, 0] = \
start_config[0] + (L * np.sin(angles[:] - ang))
rollouts[(8*num_rollouts):, i, 1] = \
start_config[1] + (L * np.cos(angles[:] - ang))
return rollouts
def generate_rollouts_old(start_config, time_horizon, num_rollouts, vel):
angles = np.linspace(np.radians(-180), np.radians(180), num_rollouts, endpoint=True)
rollouts = np.zeros((num_rollouts, np.shape(time_horizon)[0], 2), dtype=np.float32)
rollouts[:, 0] = start_config
dt = time_horizon[1] - time_horizon[0]
for i in range(1, np.shape(time_horizon)[0]):
rollouts[:, i, 0] = rollouts[:, i - 1, 0] + (vel * dt * np.sin(angles[:]))
rollouts[:, i, 1] = rollouts[:, i - 1, 1] + (vel * dt * np.cos(angles[:]))
return rollouts
# FINDING DISTANCE OF ROLLOUTS TO GROUPS
def check_inside_groups(msg, rollout_pt, group_frame):
dgs = DrawGroupShape(msg)
rollout_pt_pix = dgs.coordinate_transform(rollout_pt)
y, x = rollout_pt_pix
if ((x >= 0) and (x < msg.frame_height) and
(y >= 0) and (y < msg.frame_width) and
(group_frame[x, y] > 0)):
return True
else:
return False
def rollout_groups(msg, rollout, group_frames, groups_boundaries):
time_steps = np.shape(rollout)[0]
dists = np.ones(time_steps)*(1e+9)
hit_idx = time_steps
for i in range(time_steps):
if check_inside_groups(msg, rollout[i], group_frames[0]):
hit_idx = min(hit_idx, i)
dists[i], _ = find_least_dist(rollout[i], groups_boundaries)
return dists, hit_idx
def rollout_groups_pred(msg, rollout, group_frames, groups_boundaries):
time_steps = np.shape(rollout)[0]
dists = np.ones(time_steps)*(1e+9)
hit_idx = time_steps
for i in range(time_steps):
if check_inside_groups(msg, rollout[i], group_frames[i]):
hit_idx = min(hit_idx, i)
dists[i], _ = find_least_dist(rollout[i], groups_boundaries[i])
return dists, hit_idx
# FINDING DISTANCE OF ROLLOUT TO PEDESTRIANS
def check_inside_PS(pt_pos, ped_pos, ped_vel, const):
num_ped = len(ped_pos)
for i in range(num_ped):
rel_pos = pt_pos - ped_pos[i]
dist = np.linalg.norm(rel_pos)
ori = np.arctan2(ped_vel[i][1], ped_vel[i][0])
rel_ang = np.arctan2(rel_pos[1], rel_pos[0]) - ori
boundary_dist = GSG.boundary_dist(ped_vel[i], rel_ang, const)
if dist <= boundary_dist:
return True
return False
def rollout_peds_pred(rollout, ped_pos, ped_vel, space_const):
time_steps = np.shape(rollout)[0]
dists = np.ones(time_steps) * (1e+9)
hit_idx = time_steps
assert(time_steps <= np.shape(ped_pos)[1])
for i in range(time_steps):
ped_pos_curr = ped_pos[:, i, :]
ped_vel_curr = ped_vel[:, i, :]
dists[i], idx = find_least_dist(rollout[i], ped_pos_curr)
if not (idx == None):
min_ped_vel = ped_vel_curr[idx]
min_ped_ori = np.arctan2(min_ped_vel[1], min_ped_vel[0])
rel_pos = rollout[i] - ped_pos_curr[idx]
rel_ang = np.arctan2(rel_pos[1], rel_pos[0]) - min_ped_ori
boundary_dist = GSG.boundary_dist(min_ped_vel, rel_ang, space_const)
if dists[i] <= boundary_dist:
hit_idx = min(hit_idx, i)
return dists, hit_idx
def rollout_peds(rollout, ped_pos, ped_vel, space_const):
time_steps = np.shape(rollout)[0]
dists = np.ones(len(rollout), dtype=np.float32) * (1e+9)
hit_idx = time_steps
for i in range(time_steps):
dists[i], idx = find_least_dist(rollout[i], ped_pos)
if not (idx == None):
min_ped_vel = ped_vel[idx]
min_ped_ori = np.arctan2(min_ped_vel[1], min_ped_vel[0])
rel_pos = rollout[i] - ped_pos[idx]
rel_ang = np.arctan2(rel_pos[1], rel_pos[0]) - min_ped_ori
boundary_dist = GSG.boundary_dist(min_ped_vel, rel_ang, space_const)
if dists[i] <= boundary_dist:
hit_idx = min(hit_idx, i)
return dists, hit_idx
# EVALUATING COST FUNCTION
def min_dist_cost_func(dists, hit_idx):
cost = 0
gamma = 0.9
discount = 1
for i, d in enumerate(dists):
if i >= hit_idx:
d = -d
#cost += np.exp(-d)
cost += np.exp(-d) * discount
discount *= gamma
return cost
def evaluate_rollouts(msg, robo_pos, rollouts, occupied_points, ped_vels, group_frames, coll_thresh, goal_config, mpc_w, ps_const, groups=False, pred=False, coll_flag=False, has_obstacles=True):
# group_frames only used in groups for inside detection
num_rollouts = np.shape(rollouts)[0]
costs = np.zeros(num_rollouts, dtype=np.float32)
min_dist_weight = mpc_w
end_dist_weight = 1 - min_dist_weight
for i in range(num_rollouts):
if has_obstacles:
if(groups):
if(pred):
min_dists, hit_idx = rollout_groups_pred(msg, rollouts[i],
group_frames, occupied_points)
else:
min_dists, hit_idx = rollout_groups(msg, rollouts[i],
group_frames, occupied_points)
else:
if(pred):
min_dists, hit_idx = rollout_peds_pred(rollouts[i], occupied_points,
ped_vels, ps_const)
else:
min_dists, hit_idx = rollout_peds(rollouts[i], occupied_points,
ped_vels, ps_const)
min_dist_cost = min_dist_cost_func(min_dists, hit_idx)
else:
min_dist_cost = 0
hit_idx = np.shape(rollouts)[1]
if hit_idx == 0:
end_dist_cost = np.linalg.norm(goal_config - robo_pos)
else:
end_dist_cost = np.linalg.norm(goal_config - rollouts[i, hit_idx - 1])
costs[i] = min_dist_weight * min_dist_cost + end_dist_weight * end_dist_cost
return costs
#VISUALIZATION:
def visualize_rollouts(rollouts, lowest_cost_ind):
for i in range (len(rollouts)):
if(i!=lowest_cost_ind):
plt.plot(rollouts[i][:,0], rollouts[i][:,1], 'b')
else:
plt.plot(rollouts[i][:,0], rollouts[i][:,1], 'y')
def visualize_frame(rollouts, lowest_cost_ind, ped_pos, group_boundaries, start_config, end_config, pred=False, has_ped=True):
visualize_rollouts(rollouts, lowest_cost_ind)
if has_ped:
if len(np.shape(group_boundaries)) != 0:
visualize_groups(group_boundaries, pred)
plt.scatter(ped_pos[:, 0], ped_pos[:, 1], c='r')
else:
if (not pred):
plt.scatter(ped_pos[:, 0], ped_pos[:, 1], c='r')
else:
for tmp in ped_pos:
curr = tmp[0]
next = tmp[1:]
plt.scatter(curr[0],curr[1],c='r')
plt.scatter(next[:,0], next[:,1],c='y')
plt.plot(start_config[0], start_config[1], 'go')
plt.plot(end_config[0], end_config[1], 'mo')
plt.show()