diff --git a/.gitignore b/.gitignore
index 8d06e75..b0f2758 100644
--- a/.gitignore
+++ b/.gitignore
@@ -2,7 +2,7 @@
.vscode/
.DS_Store
src/altk.egg-info
-
+**/*.pkl
# Distribution/build
dist/
diff --git a/README.md b/README.md
index d71525e..db0dfa2 100644
--- a/README.md
+++ b/README.md
@@ -29,7 +29,7 @@ First, set up a virtual environment (e.g. via [miniconda](https://docs.conda.io/
## Getting started
-- Check out the [examples](https://github.com/CLMBRs/ultk/tree/main/src/examples), starting with a basic signaling game. The examples folder also contains a simiple efficient communication analysis of [indefinites](https://github.com/CLMBRs/ultk/tree/main/src/examples/indefinites).
+- Check out the [examples](https://github.com/CLMBRs/ultk/tree/main/src/examples), starting with a simiple efficient communication analysis of [indefinites](https://github.com/CLMBRs/ultk/tree/main/src/examples/indefinites) and a comparison of two approaches to efficient communication, with modals as a test case.
- To see more scaled up usage examples, visit the codebase for an efficient communication analysis of [modals](https://github.com/nathimel/modals-effcomm) or [sim-max games](https://github.com/nathimel/rdsg).
- For an introduction to efficient communication research, here is a [survey paper](https://www.annualreviews.org/doi/abs/10.1146/annurev-linguistics-011817-045406) of the field.
- For an introduction to the RSA framework, see [this online textbook](http://www.problang.org/).
@@ -51,7 +51,7 @@ Unit tests are written in [pytest](https://docs.pytest.org/en/7.3.x/) and execut
Figures:
-> Kemp, C. & Regier, T. (2012) Kinship Categories Across Languages Reflect General Communicative Principles. Science. https://www.science.org/doi/10.1126/science.1218811
+> Kemp, C. & Regier, T. (2012). Kinship Categories Across Languages Reflect General Communicative Principles. Science. https://www.science.org/doi/10.1126/science.1218811
> Zaslavsky, N., Kemp, C., Regier, T., & Tishby, N. (2018). Efficient compression in color naming and its evolution. Proceedings of the National Academy of Sciences, 115(31), 7937–7942. https://doi.org/10.1073/pnas.1800521115
@@ -64,7 +64,6 @@ Unit tests are written in [pytest](https://docs.pytest.org/en/7.3.x/) and execut
Links:
-> Imel, N. (2023). The evolution of efficient compression in signaling games. PsyArXiv. https://doi.org/10.31234/osf.io/b62de
> Imel, N., & Steinert-Threlkeld, S. (2022). Modal semantic universals optimize the simplicity/informativeness trade-off. Semantics and Linguistic Theory, 1(0), Article 0. https://doi.org/10.3765/salt.v1i0.5346
diff --git a/docs/search.js b/docs/search.js
index 5cea64c..d40f31e 100644
--- a/docs/search.js
+++ b/docs/search.js
@@ -1,6 +1,6 @@
window.pdocSearch = (function(){
/** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oThe Unnatural Language ToolKit (ULTK)\n\n
\n\nIntroduction \n\nULTK is a software library that aims to support efficient communication analyses of natural language. This is a line of research that aims to explain why natural languages have the structure that they do in terms competing pressures to minimize cognitive complexity and maximize communicative accuracy.
\n\nKey features:
\n\n\nPrimitives for constructing semantic spaces, expressions, and languages \nTools for measuring informativity of languages, communicative success of RSA speakers and listeners \nLanguage population sampling and optimization w.r.t Pareto fronts \nRate-Distortion and Information Bottleneck style analyses \n \n\nULTK is a long term project and it is currently in its early stages. It is intended to help lower the barrier to entry for certain research in computational semantics, and to unify methodologies. If you find something confusing, please open an issue. If you have a phenomena of interest in linguistic semantics that you want to run an efficient communication analysis on, please contact the contributors.
\n\nRead the documentation .
\n\nInstalling ULTK \n\nFirst, set up a virtual environment (e.g. via miniconda , conda create -n ultk python=3.11
, and conda activate ultk
).
\n\n\nDownload or clone this repository and navigate to the root folder.
\nInstall ULTK (We recommend doing this inside a virtual environment)
\n\npip install -e .
\n \n\nGetting started \n\n\nCheck out the examples , starting with a basic signaling game. The examples folder also contains a simiple efficient communication analysis of indefinites . \nTo see more scaled up usage examples, visit the codebase for an efficient communication analysis of modals or sim-max games . \nFor an introduction to efficient communication research, here is a survey paper of the field. \nFor an introduction to the RSA framework, see this online textbook . \n \n\nModules \n\nThere are two modules. The first is ultk.effcomm , which includes methods for measuring informativity of languages and/or communicative success of Rational Speech Act agents, and for language population sampling and optimization w.r.t Pareto fronts.
\n\nThe second module is ultk.language , which contains primitives for constructing semantic spaces, expressions, and languages. It also has a grammar
module which can be used for building expressions in a Language of Thought and measuring complexity in terms of minimum description length, as well as for natural language syntax.
\n\nThe source code is available on github here .
\n\nTesting \n\nUnit tests are written in pytest and executed via running pytest
in the src/tests
folder.
\n\nReferences \n\n\nFigures:
\n\n\n Kinship Categories Across Languages Reflect General Communicative Principles | Science. (n.d.). Retrieved February 27, 2023, from https://www.science.org/doi/10.1126/science.1218811
\n \n\n\n Zaslavsky, N., Kemp, C., Regier, T., & Tishby, N. (2018). Efficient compression in color naming and its evolution. Proceedings of the National Academy of Sciences, 115(31), 7937\u20137942. https://doi.org/10.1073/pnas.1800521115
\n \n\n\n Deni\u0107, M., Steinert-Threlkeld, S., & Szymanik, J. (2022). Indefinite Pronouns Optimize the Simplicity/Informativeness Trade-Off. Cognitive Science, 46(5), e13142. https://doi.org/10.1111/cogs.13142
\n \n\n\n Steinert-Threlkeld, S. (2021). Quantifiers in Natural Language: Efficient Communication and Degrees of Semantic Universals. Entropy, 23(10), Article 10. https://doi.org/10.3390/e23101335
\n \n\n
\n\n\nLinks:
\n\n\n Imel, N. (2023). The evolution of efficient compression in signaling games. PsyArXiv. https://doi.org/10.31234/osf.io/b62de
\n \n\n\n Imel, N., & Steinert-Threlkeld, S. (2022). Modal semantic universals optimize the simplicity/informativeness trade-off. Semantics and Linguistic Theory, 1(0), Article 0. https://doi.org/10.3765/salt.v1i0.5346
\n \n\n\n Kemp, C., Xu, Y., & Regier, T. (2018). Semantic Typology and Efficient Communication. Annual Review of Linguistics, 4(1), 109\u2013128. https://doi.org/10.1146/annurev-linguistics-011817-045406
\n \n\n
\n"}, "ultk.effcomm": {"fullname": "ultk.effcomm", "modulename": "ultk.effcomm", "kind": "module", "doc": "Tools for measuring languages for communicative efficiency.
\n\nSubmodules divide the labor of a computational experiment performing an efficiency analysis of a language into several parts: generating and sampling the space of possible languages, measuring their properties, and determining which languages optimize efficient trade-offs w.r.t these properties.
\n\nThe altk.effcomm.sampling
submodule implements several methods for generating hypothetically possible languages of a given type, by sampling from a set of possible expressions, or permuting the expression-meaning mapping of an existing language.
\n\nThe altk.effcomm.optimization
submodule contains a general implementation of an evolutionary algorithm, which can be used to estimate a Pareto frontier of optimal solutions to an efficiency trade-off. It can also be used as a technique for randomly exploring the space of possible languages.
\n\nThe altk.effcomm.tradeoff
submodule contains tools for measuring a pool of languages for various properties, finding which languages are Pareto dominant with respect to two properties, and setting attributes of the language objects for further analysis.
\n\nThe altk.effcomm.analysis
submodule contains tools for performing numerical analyses and producing paradigmatic plots of languages in 2D trade-off space.
\n\nThe altk.effcomm.information
submodule contains tools for information theory based analyses of the communicative efficiency of languages. It includes methods for Rate-Distortion style (including the Information Bottleneck) analyses.
\n\nThe altk.effcomm.agent
submodule implements classes for constructing various speakers and listeners of a language. These are typically used in static analyses of informativity of a language, and are unified abstractions from the Rational Speech Act framework. They can also be used for dynamic analyses, however (see the signaling game example ).
\n\nThe altk.effcomm.informativity
submodule implements tools for computing the literal or pragmatic informativity of a language, based on speaker/listener abstractions described above.
\n\nThe altk.effcomm.util
submodule contains various helper functions for working with the probability distributions associated with ALTK abstractions.
\n"}, "ultk.effcomm.agent": {"fullname": "ultk.effcomm.agent", "modulename": "ultk.effcomm.agent", "kind": "module", "doc": "Classes for representing communicative agents, such as Senders and Receivers figuring in Lewis-Skyrms signaling games, literal and pragmatic agents in the Rational Speech Act framework, etc.
\n"}, "ultk.effcomm.agent.CommunicativeAgent": {"fullname": "ultk.effcomm.agent.CommunicativeAgent", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent", "kind": "class", "doc": "
\n"}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.__init__", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.__init__", "kind": "function", "doc": "An agent that uses a language to communicate, e.g. a RSA pragmatic agent or a Lewis-Skyrms signaler.
\n\nArguments: \n\n\nlanguage: a language to construct a agent to define the relation between meanings and expressions, which can be used to initialize the agent matrices (e.g. S
or R
). \nname: an optional string to name the communicative agent \n \n", "signature": "(language : ultk . language . language . Language , ** kwargs ) "}, "ultk.effcomm.agent.CommunicativeAgent.language": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.language", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.language", "kind": "variable", "doc": "
\n"}, "ultk.effcomm.agent.CommunicativeAgent.shape": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.shape", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.shape", "kind": "variable", "doc": "
\n"}, "ultk.effcomm.agent.CommunicativeAgent.weights": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.weights", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.weights", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.normalized_weights", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.normalized_weights", "kind": "function", "doc": "Return the normalized weights of a CommunicativeAgent so that each row vector represents a probability distribution.
\n", "signature": "(self ) -> None : ", "funcdef": "def"}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.initialize_weights", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.initialize_weights", "kind": "function", "doc": "Initialize the agent's weight matrix.
\n\nArguments: \n\n\nweights: an np.ndarray representing the weights to initialize the agent with. By default None, and the agent's weights will be initialized uniformly. \ninitial: {'ones', 'random'} a str reprsenting the initialization method to use. If 'ones' (default), initialize the weight matrix with np.ones
. If 'random', initalize the weight matrix from np.random.uniform
. \n \n", "signature": "(self , weights : numpy . ndarray = None , initial = 'ones' ) -> None : ", "funcdef": "def"}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.referent_to_index", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.referent_to_index", "kind": "function", "doc": "
\n", "signature": "(self , referent : ultk . language . semantics . Referent ) -> int : ", "funcdef": "def"}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.index_to_referent", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.index_to_referent", "kind": "function", "doc": "
\n", "signature": "(self , index : int ) -> ultk . language . semantics . Referent : ", "funcdef": "def"}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.expression_to_index", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.expression_to_index", "kind": "function", "doc": "
\n", "signature": "(self , expression : ultk . language . language . Expression ) -> int : ", "funcdef": "def"}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.index_to_expression", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.index_to_expression", "kind": "function", "doc": "
\n", "signature": "(self , index : int ) -> ultk . language . language . Expression : ", "funcdef": "def"}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.strategy_to_indices", "kind": "function", "doc": "Maps communicative strategies to weights.
\n\nGiven a expression and referent, access the corresponding weight coordinate.
\n\nArguments: \n\n\nstrategy: a dict of the form {\"referent\": Referent, \"expression\": expression} representing an instance of communicative behavior, which we may call a communicative strategy for this agent. \n \n", "signature": "(self , strategy : dict [ str , typing . Any ] ) -> tuple [ int ] : ", "funcdef": "def"}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.sample_strategy", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.sample_strategy", "kind": "function", "doc": "Sample a communicative strategy (e.g., a word for Speaker's intended referent, or interpretation for Listener's heard word) by uniformly sampling from a row vector of the agent's weight matrix specified by the index.
\n\nArguments: \n\n\nindex: the integer index representing a row of the weight matrix. \n \n\nReturns: \n\n\n the integer index of the agent's choice
\n \n", "signature": "(self , index : int ) -> int : ", "funcdef": "def"}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"fullname": "ultk.effcomm.agent.CommunicativeAgent.to_language", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.to_language", "kind": "function", "doc": "Get a language from the agent, representing its current (possibly learned) communicative behavior.
\n\nThis function uses: \n\n\n \n the agent's weight matrix, \n the set of expression forms, and \n the set of referents \n \n \n\nfrom the language the agent was initialized with to generate a new language accurately reflecting the new expression meanings, e.g. how the agent interprets expressions as meaning zero or more referents.
\n\nArguments: \n\n\nthreshold: a float in [0,1] representing the cutoff for determining if a meaning (referent) can be communicated by a expression. Because weights are not initialized to 0, it is a good idea to set nonzero values as the threshold. \n \n\nReturns: \n\n\n a Language corresponding to the form-meaning mapping defined by the communicative agent's weights.
\n \n", "signature": "(\tself , \tdata : dict = { 'complexity' : None , 'accuracy' : None } , \tthreshold : float = 0.1 ) -> ultk . language . language . Language : ", "funcdef": "def"}, "ultk.effcomm.agent.Speaker": {"fullname": "ultk.effcomm.agent.Speaker", "modulename": "ultk.effcomm.agent", "qualname": "Speaker", "kind": "class", "doc": "
\n", "bases": "CommunicativeAgent"}, "ultk.effcomm.agent.Speaker.__init__": {"fullname": "ultk.effcomm.agent.Speaker.__init__", "modulename": "ultk.effcomm.agent", "qualname": "Speaker.__init__", "kind": "function", "doc": "An agent that uses a language to communicate, e.g. a RSA pragmatic agent or a Lewis-Skyrms signaler.
\n\nArguments: \n\n\nlanguage: a language to construct a agent to define the relation between meanings and expressions, which can be used to initialize the agent matrices (e.g. S
or R
). \nname: an optional string to name the communicative agent \n \n", "signature": "(language : ultk . language . language . Language , ** kwargs ) "}, "ultk.effcomm.agent.Speaker.S": {"fullname": "ultk.effcomm.agent.Speaker.S", "modulename": "ultk.effcomm.agent", "qualname": "Speaker.S", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, "ultk.effcomm.agent.Speaker.normalized_weights": {"fullname": "ultk.effcomm.agent.Speaker.normalized_weights", "modulename": "ultk.effcomm.agent", "qualname": "Speaker.normalized_weights", "kind": "function", "doc": "Get the normalized weights of a Speaker.
\n\nEach row vector represents a conditional probability distribution over expressions, P(e | m).
\n", "signature": "(self ) -> numpy . ndarray : ", "funcdef": "def"}, "ultk.effcomm.agent.Listener": {"fullname": "ultk.effcomm.agent.Listener", "modulename": "ultk.effcomm.agent", "qualname": "Listener", "kind": "class", "doc": "
\n", "bases": "CommunicativeAgent"}, "ultk.effcomm.agent.Listener.__init__": {"fullname": "ultk.effcomm.agent.Listener.__init__", "modulename": "ultk.effcomm.agent", "qualname": "Listener.__init__", "kind": "function", "doc": "An agent that uses a language to communicate, e.g. a RSA pragmatic agent or a Lewis-Skyrms signaler.
\n\nArguments: \n\n\nlanguage: a language to construct a agent to define the relation between meanings and expressions, which can be used to initialize the agent matrices (e.g. S
or R
). \nname: an optional string to name the communicative agent \n \n", "signature": "(language : ultk . language . language . Language , ** kwargs ) "}, "ultk.effcomm.agent.Listener.R": {"fullname": "ultk.effcomm.agent.Listener.R", "modulename": "ultk.effcomm.agent", "qualname": "Listener.R", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, "ultk.effcomm.agent.Listener.normalized_weights": {"fullname": "ultk.effcomm.agent.Listener.normalized_weights", "modulename": "ultk.effcomm.agent", "qualname": "Listener.normalized_weights", "kind": "function", "doc": "Normalize the weights of a Listener so that each row vector for the heard expression e represents a conditional probability distribution over referents P(m | e).
\n", "signature": "(self ) -> numpy . ndarray : ", "funcdef": "def"}, "ultk.effcomm.agent.LiteralSpeaker": {"fullname": "ultk.effcomm.agent.LiteralSpeaker", "modulename": "ultk.effcomm.agent", "qualname": "LiteralSpeaker", "kind": "class", "doc": "A literal speaker chooses utterances without any reasoning about other agents. The literal speaker's conditional probability distribution P(e|m) is uniform over all expressions that can be used to communicate a particular meaning. This is in contrast to a pragmatic speaker, whose conditional distribution is not uniform in this way, but instead biased towards choosing expressions that are less likely to be misinterpreted by some listener.
\n", "bases": "Speaker"}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"fullname": "ultk.effcomm.agent.LiteralSpeaker.__init__", "modulename": "ultk.effcomm.agent", "qualname": "LiteralSpeaker.__init__", "kind": "function", "doc": "An agent that uses a language to communicate, e.g. a RSA pragmatic agent or a Lewis-Skyrms signaler.
\n\nArguments: \n\n\nlanguage: a language to construct a agent to define the relation between meanings and expressions, which can be used to initialize the agent matrices (e.g. S
or R
). \nname: an optional string to name the communicative agent \n \n", "signature": "(language : ultk . language . language . Language , ** kwargs ) "}, "ultk.effcomm.agent.LiteralSpeaker.S": {"fullname": "ultk.effcomm.agent.LiteralSpeaker.S", "modulename": "ultk.effcomm.agent", "qualname": "LiteralSpeaker.S", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, "ultk.effcomm.agent.LiteralListener": {"fullname": "ultk.effcomm.agent.LiteralListener", "modulename": "ultk.effcomm.agent", "qualname": "LiteralListener", "kind": "class", "doc": "A naive literal listener interprets utterances without any reasoning about other agents. Its conditional probability distribution P(m|e) for guessing meanings is uniform over all meanings that can be denoted by the particular expression heard. This is in contrast to a pragmatic listener, whose conditional distribution is biased to guess meanings that a pragmatic speaker most likely intended.
\n", "bases": "Listener"}, "ultk.effcomm.agent.LiteralListener.__init__": {"fullname": "ultk.effcomm.agent.LiteralListener.__init__", "modulename": "ultk.effcomm.agent", "qualname": "LiteralListener.__init__", "kind": "function", "doc": "An agent that uses a language to communicate, e.g. a RSA pragmatic agent or a Lewis-Skyrms signaler.
\n\nArguments: \n\n\nlanguage: a language to construct a agent to define the relation between meanings and expressions, which can be used to initialize the agent matrices (e.g. S
or R
). \nname: an optional string to name the communicative agent \n \n", "signature": "(language : ultk . language . language . Language , ** kwargs ) "}, "ultk.effcomm.agent.LiteralListener.R": {"fullname": "ultk.effcomm.agent.LiteralListener.R", "modulename": "ultk.effcomm.agent", "qualname": "LiteralListener.R", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, "ultk.effcomm.agent.PragmaticSpeaker": {"fullname": "ultk.effcomm.agent.PragmaticSpeaker", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticSpeaker", "kind": "class", "doc": "A pragmatic speaker chooses utterances based on how a listener would interpret them. A pragmatic speaker may be initialized with any kind of listener, e.g. literal or pragmatic -- meaning the recursive reasoning can be modeled up to arbitrary depth.
\n", "bases": "Speaker"}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"fullname": "ultk.effcomm.agent.PragmaticSpeaker.__init__", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticSpeaker.__init__", "kind": "function", "doc": "Initialize the |M|-by-|E| matrix, S, corresponding to the pragmatic speaker's conditional probability distribution over expressions given meanings.
\n\nThe pragmatic speaker chooses expressions to communicate their intended meaning according to:
\n\n$P(e | m) \\propto \\exp(t * u(e,m))$
\n\nwhere $t \\in [0,1]$ is a temperature parameter and utility $u$ is defined
\n\n$u(e , m) := \\log(P_{\\text{Listener}}(m | e))$
\n\nArguments: \n\n\nlanguage: the language with |M| meanings and |E| expressions defining the size of S. \nlistener: a communicative agent storing a matrix R representing the conditional distribution over expressions given meanings. \ntemperature: a float \\in [0,1], representing how `optimally rational' the pragmatic speaker is; 1.0 is chosen when no particular assumptions about rationality are made. \n \n", "signature": "(\tlanguage : ultk . language . language . Language , \tlistener : ultk . effcomm . agent . Listener , \ttemperature : float = 1.0 , \t** kwargs ) "}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"fullname": "ultk.effcomm.agent.PragmaticSpeaker.S", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticSpeaker.S", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, "ultk.effcomm.agent.PragmaticListener": {"fullname": "ultk.effcomm.agent.PragmaticListener", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticListener", "kind": "class", "doc": "A pragmatic listener interprets utterances based on their expectations about a pragmatic speaker's decisions. A pragmatic listener may be initialized with any kind of speaker, e.g. literal or pragmatic -- meaning the recursive reasoning can be modeled up to arbitrary depth.
\n", "bases": "Listener"}, "ultk.effcomm.agent.PragmaticListener.__init__": {"fullname": "ultk.effcomm.agent.PragmaticListener.__init__", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticListener.__init__", "kind": "function", "doc": "Initialize the |E|-by-|M| matrix, R, corresponding to the pragmatic listener's conditional probability distribution over meanings given expressions.
\n\nThe pragmatic listener chooses meanings as their best guesses of the expression they heard according to:
\n\n$P(m | e) \\propto P_{\\text{PragmaticSpeaker}}(e | m)$
\n\nArguments: \n\n\nlanguage: the language with |M| meanings and |E| expressions defining the size of R. \nspeaker: a communicative agent storing a matrix S representing the conditional distribution over expressions given meanings. \nprior: a diagonal matrix of size |M|-by-|M| representing the communicative need probabilities for meanings. \n \n", "signature": "(\tlanguage : ultk . language . language . Language , \tspeaker : ultk . effcomm . agent . Speaker , \tprior : numpy . ndarray , \t** kwargs ) "}, "ultk.effcomm.agent.PragmaticListener.R": {"fullname": "ultk.effcomm.agent.PragmaticListener.R", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticListener.R", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, "ultk.effcomm.agent.BayesianListener": {"fullname": "ultk.effcomm.agent.BayesianListener", "modulename": "ultk.effcomm.agent", "qualname": "BayesianListener", "kind": "class", "doc": "A Bayesian reciever chooses an interpretation according to p(meaning | word), where
\n\nBUG: This is extremely misleading since we basically only use this function for IB, and IB assumes a DETERMINISTIC bayes-derived listener. \n\n$P(m | w) = \\frac{P(M | W) \\cdot P(M)} { P(W) }$
\n\nFurthermore, we sometimes require that each word w is deterministically interpreted as meaning $\\hat{m}$ as follows:
\n\nBUG: This says nothing about determinism. \n\n$\\hat{m}_{w}(u) = \\sum_m p(m|w) \\cdot m(u)$
\n\nSee ultk.effcomm.information for more details.
\n", "bases": "Listener"}, "ultk.effcomm.agent.BayesianListener.__init__": {"fullname": "ultk.effcomm.agent.BayesianListener.__init__", "modulename": "ultk.effcomm.agent", "qualname": "BayesianListener.__init__", "kind": "function", "doc": "An agent that uses a language to communicate, e.g. a RSA pragmatic agent or a Lewis-Skyrms signaler.
\n\nArguments: \n\n\nlanguage: a language to construct a agent to define the relation between meanings and expressions, which can be used to initialize the agent matrices (e.g. S
or R
). \nname: an optional string to name the communicative agent \n \n", "signature": "(\tspeaker : ultk . effcomm . agent . Speaker , \tprior : numpy . ndarray , \tname : str = None ) "}, "ultk.effcomm.analysis": {"fullname": "ultk.effcomm.analysis", "modulename": "ultk.effcomm.analysis", "kind": "module", "doc": "Functions for analyzing and formatting the results of the simplicity/informativeness trade-off.
\n"}, "ultk.effcomm.analysis.get_dataframe": {"fullname": "ultk.effcomm.analysis.get_dataframe", "modulename": "ultk.effcomm.analysis", "qualname": "get_dataframe", "kind": "function", "doc": "Get a pandas DataFrame for a list of languages containing efficient communication data.
\n\nArguments: \n\n\nlanguages: the list of languages to map into a dataframe. \ncolumns: the list of keys to a language's data
dictionary attribute, which will comprise the columns of the resulting dataframe. By default will use all items of each language's data
dictionary. \nsubset: the columns to subset for duplicates \nduplicates: {\"drop\", \"count\", \"leave\"} whether to drop, count, or do nothing with duplicates. By default is set to \"leave\" which will leave duplicates in the dataframe. \n \n\nReturns: \n\n\n \n data: a pandas DataFrame with rows as individual languages, with the columns specifying their data. \n \n \n", "signature": "(\tlanguages : list [ ultk . language . language . Language ] , \tcolumns : list [ str ] = None , \tsubset : list [ str ] = [ 'complexity' , 'comm_cost' ] , \tduplicates : str = 'leave' ) -> pandas . core . frame . DataFrame : ", "funcdef": "def"}, "ultk.effcomm.analysis.pearson_analysis": {"fullname": "ultk.effcomm.analysis.pearson_analysis", "modulename": "ultk.effcomm.analysis", "qualname": "pearson_analysis", "kind": "function", "doc": "Measures pearson correlation coefficient for naturalness with a property.
\n\nUse nonparametric bootstrap for confidence intervals.
\n\nArguments: \n\n\ndata: a DataFrame representing the pool of measured languages \npredictor: a string representing the column to measure pearson r with \nproperty: a string representing a column to measure pearson r with the predictor column \nnum_bootstrap_samples: how many samples to bootstrap from the original data \n \n\nReturns: \n\n\n a dict of the pearson correlation coefficient for the predictor and the property, and bootstrapped confidence intervals for this coefficient, e.g.
\n\n{\n\"rho\": (a float between -1 and 1),\n\"confidence_intervals\": (a pandas Dataframe with the columns [\n 'bootstrap_sample_percent', 'low', 'high'\n])\n}\n
\n \n", "signature": "(\tdata , \tpredictor : str , \tproperty : str , \tnum_bootstrap_samples = 100 ) -> dict [ str , typing . Any ] : ", "funcdef": "def"}, "ultk.effcomm.analysis.trade_off_means": {"fullname": "ultk.effcomm.analysis.trade_off_means", "modulename": "ultk.effcomm.analysis", "qualname": "trade_off_means", "kind": "function", "doc": "Get a dataframe with the mean tradeoff data.
\n\nArguments: \n\n\nname: a str representing the subset of the population to observe mean properties for, e.g. \"natural\" or \"population\". \ndf: a pandas DataFrame containing data of a language population to take the means of. \nprperties: the properties to take means of, corresponding to columns of df
. \n \n\nExamples:
\n\n\n
>>> natural_means = trade_off_means ( "natural_means" , natural_data , properties ) \n>>> population_means = trade_off_means ( "population_means" , data , properties ) \n>>> means_df = pd . concat ([ natural_means , dlsav_means , population_means ]) . set_index ( "name" ) \n>>> means_df \n simplicity complexity informativity optimality \n name \n natural_means 0.772222 16.4000 0.746296 0.952280 \n population_means 0.681068 22.9631 0.525118 0.832010 \n
\n
\n", "signature": "(\tname : str , \tdf : pandas . core . frame . DataFrame , \tproperties : list ) -> pandas . core . frame . DataFrame : ", "funcdef": "def"}, "ultk.effcomm.analysis.trade_off_ttest": {"fullname": "ultk.effcomm.analysis.trade_off_ttest", "modulename": "ultk.effcomm.analysis", "qualname": "trade_off_ttest", "kind": "function", "doc": "Get a dataframe with a single-samples t-test results for a subpopulation against the full population.
\n\nThis is useful if we want to compare the optimality of natural languages to the full population of languages in an experiment. Because the property of 'being a natural language' is categorical, we use a single-samples T test.
\n\nArguments: \n\n\nsub_population: a pandas DataFrame representing a subset of the population to take ttests against the full language population for properties
. \npopulation_means: a dict containing properties as keys and the mean value of the full language population for that property. \nproperties: a list of strings corresponding to columns of the sub_population
DataFrame and keys of the population_means
dict. \n \n\nExamples: \n\n\n \n
>>> df = trade_off_ttest ( natural_data , population_means , properties ) \n>>> df \n simplicity complexity informativity optimality \n stat \n t-statistic 4.101937 -4.101937 3.126855 4.031027 \n Two-sided p-value 0.014830 0.014830 0.035292 0.015720 \n
\n
\n \n", "signature": "(\tsub_population : pandas . core . frame . DataFrame , \tpopulation_means : dict , \tproperties : list ) -> pandas . core . frame . DataFrame : ", "funcdef": "def"}, "ultk.effcomm.information": {"fullname": "ultk.effcomm.information", "modulename": "ultk.effcomm.information", "kind": "module", "doc": "Helper functions for Rate-Distortion based (including Information Bottleneck) efficient communication analyses.
\n"}, "ultk.effcomm.information.information_rate": {"fullname": "ultk.effcomm.information.information_rate", "modulename": "ultk.effcomm.information", "qualname": "information_rate", "kind": "function", "doc": "Compute the information rate / complexity of the encoder q(w|m) as $I[W:M]$.
\n", "signature": "(source : numpy . ndarray , encoder : numpy . ndarray ) -> float : ", "funcdef": "def"}, "ultk.effcomm.information.get_rd_curve": {"fullname": "ultk.effcomm.information.get_rd_curve", "modulename": "ultk.effcomm.information", "qualname": "get_rd_curve", "kind": "function", "doc": "Use the Blahut Arimoto algorithm to obtain a list of (rate, distortion) points.
\n", "signature": "(\tprior : numpy . ndarray , \tdist_mat : numpy . ndarray , \tbetas : numpy . ndarray = None ) -> list [ tuple [ float ]] : ", "funcdef": "def"}, "ultk.effcomm.information.expected_distortion": {"fullname": "ultk.effcomm.information.expected_distortion", "modulename": "ultk.effcomm.information", "qualname": "expected_distortion", "kind": "function", "doc": "$D[X, \\hat{X}] = \\sum_x p(x) \\sum_{\\hat{x}} p(\\hat{x}|x) \\cdot d(x, \\hat{x})$
\n", "signature": "(\tp_x : numpy . ndarray , \tp_xhat_x : numpy . ndarray , \tdist_mat : numpy . ndarray ) -> float : ", "funcdef": "def"}, "ultk.effcomm.information.compute_rate_distortion": {"fullname": "ultk.effcomm.information.compute_rate_distortion", "modulename": "ultk.effcomm.information", "qualname": "compute_rate_distortion", "kind": "function", "doc": "Compute the information rate $I(X;\\hat{X})$ and total distortion $D[X, \\hat{X}]$ of a joint distribution defind by $P(X)$ and $P(\\hat{X}|X)$.
\n\nArguments: \n\n\np_x: array of shape |X|
the prior probability of an input symbol (i.e., the source) \np_xhat_x: array of shape (|X|, |X_hat|)
the probability of an output symbol given the input \ndist_mat: array of shape (|X|, |X_hat|)
representing the distoriton matrix between the input alphabet and the reconstruction alphabet. \n \n\nReturns: \n\n\n a (rate, distortion) tuple containing the information rate (in bits) of compressing X into X_hat and the expected distortion between X, X_hat
\n \n", "signature": "(p_x , p_xhat_x , dist_mat ) -> tuple [ numpy . ndarray ] : ", "funcdef": "def"}, "ultk.effcomm.information.blahut_arimoto": {"fullname": "ultk.effcomm.information.blahut_arimoto", "modulename": "ultk.effcomm.information", "qualname": "blahut_arimoto", "kind": "function", "doc": "Compute the rate-distortion function of an i.i.d distribution
\n\nArguments: \n\n\ndist_mat: array of shape (|X|, |X_hat|)
representing the distortion matrix between the input alphabet and the reconstruction alphabet. dist_mat[i,j] = dist(x[i],x_hat[j]). In this context, X is a random variable representing the a speaker's meaning (target referent), and X_hat is a random variable representing a listener's meaning (guessed referent). \np_x: (1D array of shape |X|
) representing the probability mass function of the source. In this context, the prior over states of nature. \nbeta: (scalar) the slope of the rate-distoriton function at the point where evaluation is required \nmax_it: max number of iterations \neps: accuracy required by the algorithm: the algorithm stops if there is no change in distoriton value of more than 'eps' between consequtive iterations \nignore_converge: whether to run the optimization until max_it
, ignoring the stopping criterion specified by eps
. \n \n\nReturns: \n\n\n a dict of the form
\n\n{\n 'final': a tuple of (rate, distortion) values. This is the rate (in bits) of compressing X into X_hat, and distortion between X, X_hat\n\n 'trajectory': a list of the (rate, distortion) points discovered during optimization\n}\n
\n \n", "signature": "(\tdist_mat : numpy . ndarray , \tp_x : numpy . ndarray , \tbeta : float , \tmax_it : int = 200 , \teps : float = 1e-05 , \tignore_converge : bool = False ) -> tuple [ float ] : ", "funcdef": "def"}, "ultk.effcomm.information.get_ib_curve": {"fullname": "ultk.effcomm.information.get_ib_curve", "modulename": "ultk.effcomm.information", "qualname": "get_ib_curve", "kind": "function", "doc": "Get a list of (complexity, accuracy) or (complexity, distortion) points. A minimal wrapper of get_bottleneck.
\n\nArguments: \n\n\nprior: array of shape |meanings|
\nmeaning_dists: array of shape (|meanings|, |meanings|)
representing the distribution over world states given meanings. \ncurve_type: {'informativity', 'comm_cost'} specifies whether to return the (classic) IB axes of informativity vs. complexity, or the more Rate-Distortion Theory aligned axes of comm_cost vs. complexity. The latter can be obtained easily from the former by subtracting each informativity value from I[M:U], which is a constant for all languages in the same domain. \nmaxbeta: the maximum value of beta to use to compute the curve. \nminbeta: the minimum value of beta to use. \nnumbeta: the number of (equally-spaced) beta values to consider to compute the curve. \nprocesses: number of cpu threads to run in parallel (default = 1) \n \n\nReturns: \n\n\n an array of shape (num_points, 2)
representing the list of (accuracy/comm_cost, complexity) points on the information plane.
\n \n", "signature": "(\tprior : numpy . ndarray , \tmeaning_dists : numpy . ndarray , \tmaxbeta : float , \tminbeta : float , \tnumbeta : float , \tprocesses : int = 1 , \tcurve_type : str = 'informativity' ) -> tuple [ float ] : ", "funcdef": "def"}, "ultk.effcomm.information.get_bottleneck": {"fullname": "ultk.effcomm.information.get_bottleneck", "modulename": "ultk.effcomm.information", "qualname": "get_bottleneck", "kind": "function", "doc": "Compute the IB curve bound (I[M:W] vs. I[W:U]). We use the embo package, which has support for smoothing any non-monotonicity in the bound resulting from BA optimization getting stuck in local minima.
\n\nArguments: \n\n\nprior: array of shape |meanings|
\nmeaning_dists: array of shape (|meanings|, |meanings|)
representing the distribution over world states given meanings. \ncurve_type: {'informativity', 'comm_cost'} specifies whether to return the (classic) IB axes of informativity vs. complexity, or the more Rate-Distortion Theory aligned axes of comm_cost vs. complexity. The comm_cost can be obtained easily from informativity by subtracting each informativity value from I[M:U], which is a constant for all languages in the same domain. \nmaxbeta: the maximum value of beta to use to compute the curve. \nminbeta: the minimum value of beta to use. \nnumbeta: the number of (equally-spaced) beta values to consider to compute the curve. \nprocesses: number of cpu threads to run in parallel (default = 1) \n \n\nReturns: \n\n\n a dict containing the coordinates and encoders corresponding to IB optima, of the form
\n\n{\n\"encoders\": an array of shape `(num_meanings, num_words)`,\n\n\"coordinates\": a tuple of arrays `(complexity, accuracy, comm_cost)` each of shape (`numbeta`,)\n\"beta\": an array of shape (`numbeta`,) corresponding to the actually used betas after non-monotonicity corrections.\n}\n
\n \n", "signature": "(\tprior : numpy . ndarray , \tmeaning_dists : numpy . ndarray , \tmaxbeta : float , \tminbeta : float , \tnumbeta : float , \tprocesses : int = 1 ) -> numpy . ndarray : ", "funcdef": "def"}, "ultk.effcomm.information.ib_complexity": {"fullname": "ultk.effcomm.information.ib_complexity", "modulename": "ultk.effcomm.information", "qualname": "ib_complexity", "kind": "function", "doc": "Compute the IB encoder complexity of a language $I[M:W]$.
\n", "signature": "(language : ultk . language . language . Language , prior : numpy . ndarray ) -> float : ", "funcdef": "def"}, "ultk.effcomm.information.ib_informativity": {"fullname": "ultk.effcomm.information.ib_informativity", "modulename": "ultk.effcomm.information", "qualname": "ib_informativity", "kind": "function", "doc": "Compute the expected informativity (accuracy) $I[W:U]$ of a lexicon.
\n\nArguments: \n\n\nlanguage: the Language to measure for informativity \nprior: communicative need distribution \nmeaning_dists: array of shape (|meanings|, |meanings|)
representing the distribution over world states given meanings. \n \n\nReturns: \n\n\n the informativity of the language I[W:U] in bits.
\n \n", "signature": "(\tlanguage : ultk . language . language . Language , \tprior : numpy . ndarray , \tmeaning_dists : numpy . ndarray ) -> float : ", "funcdef": "def"}, "ultk.effcomm.information.ib_comm_cost": {"fullname": "ultk.effcomm.information.ib_comm_cost", "modulename": "ultk.effcomm.information", "qualname": "ib_comm_cost", "kind": "function", "doc": "Compute the IB communicative cost, i.e. expected KL-divergence betweeen speaker and listener meanings, for a language.
\n\nArguments: \n\n\nlanguage: the Language to measure for communicative cost \nprior: communicative need distribution \nmeaning_dists: array of shape (|meanings|, |meanings|)
representing the distribution over world states given meanings. \n \n\nReturns: \n\n\n the communicative cost, $\\mathbb{E}[D_{KL}[M || \\hat{M}]] = I[M:U] - I[W:U]$ in bits.
\n \n", "signature": "(\tlanguage : ultk . language . language . Language , \tprior : numpy . ndarray , \tmeaning_dists : numpy . ndarray ) -> float : ", "funcdef": "def"}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"fullname": "ultk.effcomm.information.language_to_ib_encoder_decoder", "modulename": "ultk.effcomm.information", "qualname": "language_to_ib_encoder_decoder", "kind": "function", "doc": "Convert a Language, a mapping of words to meanings, to IB encoder, q(w|m) and IB decoder q(m|w).
\n\nArguments: \n\n\nlanguage: the lexicon from which to infer a speaker (encoder). \nprior: communicative need distribution \n \n\nReturns: \n\n\n a dict of the form\n {\n \"encoder\": np.ndarray of shape (|meanings|, |words|)
,\n \"decoder\": np.ndarray of shape (|words|, |meanings|)
,\n }
\n \n", "signature": "(\tlanguage : ultk . language . language . Language , \tprior : numpy . ndarray ) -> dict [ str , numpy . ndarray ] : ", "funcdef": "def"}, "ultk.effcomm.information.ib_accuracy": {"fullname": "ultk.effcomm.information.ib_accuracy", "modulename": "ultk.effcomm.information", "qualname": "ib_accuracy", "kind": "function", "doc": "Return the accuracy of the lexicon I[W:U]
\n\nArguments: \n\n\nencoder: array of shape (|M|, |W|)
representing P(W | M) \ndecoder: array of shape (|W|, |M|)
representing P(M | W) \nmeaning_dists: array of shape (|M|, |U|)
representing P(U | M) \nprior: array of shape |M|
representing P(M) \n \n\nReturns: \n\n\n the accuracy of the lexicon I[W:U]
\n \n", "signature": "(\tencoder : numpy . ndarray , \tprior : numpy . ndarray , \tmeaning_dists : numpy . ndarray ) -> float : ", "funcdef": "def"}, "ultk.effcomm.information.ib_distortion": {"fullname": "ultk.effcomm.information.ib_distortion", "modulename": "ultk.effcomm.information", "qualname": "ib_distortion", "kind": "function", "doc": "Return the IB distortion measure E[DKL[ M || M_hat ]]
\n\nArguments: \n\n\nencoder: array of shape (|M|, |W|)
representing P(W | M) \ndecoder: array of shape (|W|, |M|)
representing P(M | W) \nmeaning_dists: array of shape (|M|, |U|)
representing P(U | M) \nprior: array of shape |M|
representing P(M) \n \n\nReturns: \n\n\n the distortion E[DKL[ M || M_hat ]] = I[M:U] - I[W:U]
\n \n", "signature": "(\tencoder : numpy . ndarray , \tprior : numpy . ndarray , \tmeaning_dists : numpy . ndarray ) -> float : ", "funcdef": "def"}, "ultk.effcomm.information.ib_encoder_to_point": {"fullname": "ultk.effcomm.information.ib_encoder_to_point", "modulename": "ultk.effcomm.information", "qualname": "ib_encoder_to_point", "kind": "function", "doc": "Return (complexity, accuracy, comm_cost) IB coordinates.
\n\nArguments: \n\n\nmeaning_dists: array of shape (|meanings|, |meanings|)
representing the distribution over world states given meanings. \nprior: array of shape |M|
representing the cognitive source \nencoder: array of shape (|M|, |W|)
representing P(W | M) \ndecoder: array of shape (|W|, |M|)
representing P(M | W). By default is None, and the Bayesian optimal decoder will be inferred. \n \n", "signature": "(\tmeaning_dists : numpy . ndarray , \tprior : numpy . ndarray , \tencoder : numpy . ndarray , \tdecoder : numpy . ndarray = None ) -> tuple [ float ] : ", "funcdef": "def"}, "ultk.effcomm.information.ib_optimal_decoder": {"fullname": "ultk.effcomm.information.ib_optimal_decoder", "modulename": "ultk.effcomm.information", "qualname": "ib_optimal_decoder", "kind": "function", "doc": "Compute the bayesian optimal decoder. See https://github.com/nogazs/ib-color-naming/blob/master/src/ib_naming_model.py#L40
\n\nArguments: \n\n\nencoder: array of shape (|words|, |meanings|)
\nprior: array of shape (|meanings|,)
\nmeaning_dists: array of shape (|meanings|, |meanings|)
\n \n\nReturns: \n\n\n array of shape (|words|, |meanings|)
representing the 'optimal' deterministic decoder
\n \n", "signature": "(\tencoder : numpy . ndarray , \tprior : numpy . ndarray , \tmeaning_dists : numpy . ndarray ) -> numpy . ndarray : ", "funcdef": "def"}, "ultk.effcomm.informativity": {"fullname": "ultk.effcomm.informativity", "modulename": "ultk.effcomm.informativity", "kind": "module", "doc": "Functions for measuring informativity in efficient communication analyses of languages.
\n"}, "ultk.effcomm.informativity.indicator_utility": {"fullname": "ultk.effcomm.informativity.indicator_utility", "modulename": "ultk.effcomm.informativity", "qualname": "indicator_utility", "kind": "function", "doc": "Indicator utility function, i.e. delta. Returns 1.0 iff ref1 equals ref2.
\n", "signature": "(\tref1 : ultk . language . semantics . Referent , \tref2 : ultk . language . semantics . Referent ) -> float : ", "funcdef": "def"}, "ultk.effcomm.informativity.informativity": {"fullname": "ultk.effcomm.informativity.informativity", "modulename": "ultk.effcomm.informativity", "qualname": "informativity", "kind": "function", "doc": "The informativity of a language is identified with the successful communication between a speaker and a listener.
\n\nThis function is a wrapper for communicative_success
.
\n\nArguments: \n\n\nlanguage: the language to compute informativity of. \nprior: a probability distribution representing communicative need (frequency) for Referents. \nutility: a function representing the usefulness of listener guesses about speaker Referents, e.g. Referent similarity. To reward only exact recovery of meanings, use the indicator function (default). \nkind: {\"literal, pragmatic\"} Whether to measure informativity using literal or pragmatic agents, as canonically described in the Rational Speech Act framework. The default is \"literal\". \n \n\nConcepts :\n The speaker can be thought of as a conditional distribution over expressions given meanings. The listener is likewise a conditional distribution over meanings given expressions. The communicative need, or cognitive source, is a prior probability over meanings representing how frequently agents need to use certain meanings in communication. The utility function represents the similarity, or appropriateness, of the listener's guess m' about the speaker's intended meaning m.
\n\nFormula :\n The informativity of a language $L$ with meaning space $M$ is defined:
\n\n$I(L) := \\sum_{m \\in M} p(m) \\sum_{i \\in L} p(i|m) \\sum_{\\hat{m} \\in i} p(\\hat{m}|i) \\cdot u(m, \\hat{m})$
\n\nBounds :\n A perfectly informative (=1.0) language can be constructed with a exactly one expression for each meaning.
\n\nFor u() = indicator(), every language has nonzero informativity because a language must contain at least one expression, and an expression must contain at least one meaning.\n
\n", "signature": "(\tlanguage : ultk . language . language . Language , \tprior : numpy . ndarray , \tutility : Callable [[ ultk . language . semantics . Referent , ultk . language . semantics . Referent ], float ] = < function indicator_utility > , \tagent_type : str = 'literal' ) -> float : ", "funcdef": "def"}, "ultk.effcomm.informativity.communicative_success": {"fullname": "ultk.effcomm.informativity.communicative_success", "modulename": "ultk.effcomm.informativity", "qualname": "communicative_success", "kind": "function", "doc": "Helper function to compute the literal informativity of a language.
\n\n$I(L) = \\sum_{m, \\hat{m}} P(m, \\hat{m}) \\cdot u(m, \\hat{m})$
\n\n$ = \\sum_{m \\in M} p(m) \\sum_{i \\in L} p(i|m) \\sum_{\\hat{m} \\in i} p(\\hat{m} |i) \\cdot u(m, m')$
\n\n$ = \\sum \\text{diag}(p)SR \\odot U $
\n\nFor more details, see docs/vectorized_informativity .
\n\nArguments: \n\n\nspeaker: a literal or pragmatic speaker, containing a matrix S for P(e | m) \nlistener: a literal or pragmatic listener, containing a matrix R for P(m | e) \nprior: p(m), distribution over meanings representing communicative need \nutility: a function u(m, m') representing similarity of meanings, or pair-wise usefulness of listener guesses about speaker meanings. \n \n", "signature": "(\tspeaker : ultk . effcomm . agent . Speaker , \tlistener : ultk . effcomm . agent . Listener , \tprior : numpy . ndarray , \tutility : Callable [[ ultk . language . semantics . Referent , ultk . language . semantics . Referent ], float ] ) -> float : ", "funcdef": "def"}, "ultk.effcomm.optimization": {"fullname": "ultk.effcomm.optimization", "modulename": "ultk.effcomm.optimization", "kind": "module", "doc": "Classes and functions for generating languages that optimize the simplicity/informativeness trade-off, e.g. via an iterative evolutionary algorithm.
\n"}, "ultk.effcomm.optimization.Mutation": {"fullname": "ultk.effcomm.optimization.Mutation", "modulename": "ultk.effcomm.optimization", "qualname": "Mutation", "kind": "class", "doc": "
\n"}, "ultk.effcomm.optimization.Mutation.precondition": {"fullname": "ultk.effcomm.optimization.Mutation.precondition", "modulename": "ultk.effcomm.optimization", "qualname": "Mutation.precondition", "kind": "function", "doc": "Whether a mutation is allowed to apply to a language.
\n", "signature": "(language : ultk . language . language . Language , ** kwargs ) -> bool : ", "funcdef": "def"}, "ultk.effcomm.optimization.Mutation.mutate": {"fullname": "ultk.effcomm.optimization.Mutation.mutate", "modulename": "ultk.effcomm.optimization", "qualname": "Mutation.mutate", "kind": "function", "doc": "Mutate the language, possibly using a list of expressions.
\n", "signature": "(\tlanguage : ultk . language . language . Language , \texpressions : list [ ultk . language . language . Expression ] , \t** kwargs ) -> ultk . language . language . Language : ", "funcdef": "def"}, "ultk.effcomm.optimization.RemoveExpression": {"fullname": "ultk.effcomm.optimization.RemoveExpression", "modulename": "ultk.effcomm.optimization", "qualname": "RemoveExpression", "kind": "class", "doc": "
\n", "bases": "Mutation"}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"fullname": "ultk.effcomm.optimization.RemoveExpression.precondition", "modulename": "ultk.effcomm.optimization", "qualname": "RemoveExpression.precondition", "kind": "function", "doc": "Whether a mutation is allowed to apply to a language.
\n", "signature": "(language : ultk . language . language . Language , ** kwargs ) -> bool : ", "funcdef": "def"}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"fullname": "ultk.effcomm.optimization.RemoveExpression.mutate", "modulename": "ultk.effcomm.optimization", "qualname": "RemoveExpression.mutate", "kind": "function", "doc": "Mutate the language, possibly using a list of expressions.
\n", "signature": "(\tlanguage : ultk . language . language . Language , \texpressions : list [ ultk . language . language . Expression ] , \t** kwargs ) -> ultk . language . language . Language : ", "funcdef": "def"}, "ultk.effcomm.optimization.AddExpression": {"fullname": "ultk.effcomm.optimization.AddExpression", "modulename": "ultk.effcomm.optimization", "qualname": "AddExpression", "kind": "class", "doc": "
\n", "bases": "Mutation"}, "ultk.effcomm.optimization.AddExpression.precondition": {"fullname": "ultk.effcomm.optimization.AddExpression.precondition", "modulename": "ultk.effcomm.optimization", "qualname": "AddExpression.precondition", "kind": "function", "doc": "Whether a mutation is allowed to apply to a language.
\n", "signature": "(language : ultk . language . language . Language , ** kwargs ) -> bool : ", "funcdef": "def"}, "ultk.effcomm.optimization.AddExpression.mutate": {"fullname": "ultk.effcomm.optimization.AddExpression.mutate", "modulename": "ultk.effcomm.optimization", "qualname": "AddExpression.mutate", "kind": "function", "doc": "Mutate the language, possibly using a list of expressions.
\n", "signature": "(\tlanguage : ultk . language . language . Language , \texpressions : list [ ultk . language . language . Expression ] , \t** kwargs ) -> ultk . language . language . Language : ", "funcdef": "def"}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer", "kind": "class", "doc": "Class for approximating the Pareto frontier of languages optimizing the simplicity/informativity trade-off.
\n"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.__init__", "kind": "function", "doc": "Initialize the evolutionary algorithm configurations.
\n\nThe measures of complexity and informativity, the expressions, and the mutations are all specific to the particular semantic domain.
\n\nArguments: \n\n\nobjectives: a dict of the two objectives to optimize for, e.g. simplicity and informativeness, of the form, e.g.\n{\n \"complexity\": comp_measure,\n \"comm_cost\": lambda l: 1 - inf_measure(l)\n} \nexpressions: a list of expressions from which to apply mutations to languages. \nsample_size: the size of the population at every generation. \nmax_muatations: between 1 and this number of mutations will be applied to a subset of the population at the end of each generation. \ngenerations: how many iterations to run the evolutionary algorithm for. \nlang_size: between 1 and this number of expressions comprise a language. \nmutations: (optional) a list of Mutation objects, defaults to add/remove expression \n \n", "signature": "(\tobjectives : list [ typing . Callable [[ ultk . language . language . Language ], typing . Any ]] , \texpressions : list [ ultk . language . language . Expression ] , \tsample_size : int , \tmax_mutations : int , \tgenerations : int , \tlang_size : int = None , \tmutations: list[ultk.effcomm.optimization.Mutation] = [<class 'ultk.effcomm.optimization.AddExpression'>, <class 'ultk.effcomm.optimization.RemoveExpression'>] ) "}, "ultk.effcomm.optimization.EvolutionaryOptimizer.objectives": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.objectives", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.objectives", "kind": "variable", "doc": "
\n"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.expressions": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.expressions", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.expressions", "kind": "variable", "doc": "
\n"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutations": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.mutations", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.mutations", "kind": "variable", "doc": "
\n"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.sample_size", "kind": "variable", "doc": "
\n"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.max_mutations", "kind": "variable", "doc": "
\n"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.generations": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.generations", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.generations", "kind": "variable", "doc": "
\n"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.lang_size", "kind": "variable", "doc": "
\n"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.dominating_languages", "kind": "variable", "doc": "
\n"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.explored_languages", "kind": "variable", "doc": "
\n"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.fit", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.fit", "kind": "function", "doc": "Computes the Pareto frontier, a set languages which cannot be both more simple and more informative.
\n\nUses pygmo's nondominated_front method for computing a population's best solutions to a multi-objective optimization problem.
\n\nArguments: \n\n\nseed_population: a list of languages representing the population at generation 0 of the algorithm. \nexplore: a float in [0,1] representing how much to optimize for fitness\n(optimality wrt pareto front of complexity and comm_cost), and how much to randomly explore. \n \n\nReturns: \n\n\n a dict of the estimated optimization solutions, as well as points explored along the way; of the form
\n\n{\n\"dominating_languages\": list of languages as estimated solutions,\n\"explored_languages\": list of all the languages explored during the evolutionary algorithm,\n}\n
\n \n", "signature": "(\tself , \tseed_population : list [ ultk . language . language . Language ] , \texplore : float = 0.0 ) -> dict [ str , list [ ultk . language . language . Language ]] : ", "funcdef": "def"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.sample_mutated", "kind": "function", "doc": "Arguments: \n\n\nlanguages: dominating languages of a generation \namount: sample_size. \nexpressions: the list of expressions \n \n\nReturns: \n\n\n list of updated languages
\n \n", "signature": "(\tself , \tlanguages : list [ ultk . language . language . Language ] ) -> list [ ultk . language . language . Language ] : ", "funcdef": "def"}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.mutate", "kind": "function", "doc": "Randomly selects a mutation that is allowed to apply and applies it to a language.
\n\nArguments: \n\n\nlanguage: the Language to mutate \nexpressions: the list of all possible expressions.\nSome mutations need access to this list, so it is part of the mutation api. \n \n\nReturns: \n\n\n the mutated Language
\n \n", "signature": "(\tself , \tlanguage : ultk . language . language . Language ) -> ultk . language . language . Language : ", "funcdef": "def"}, "ultk.effcomm.optimization.sample_parents": {"fullname": "ultk.effcomm.optimization.sample_parents", "modulename": "ultk.effcomm.optimization", "qualname": "sample_parents", "kind": "function", "doc": "Use the explore parameter to explore possibly suboptimal areas of the language space.
\n\nArguments: \n\n\ndominating_languages: a list of the languages with current best fitness with respect to the objectives. \nexplored_languages: a list of all languages encountered during the evolutionary algorithm. \nexplore: a float in [0,1]
specifying how much to explore possibly suboptimal languages.\nIf set to 0, parent_languages
is just dominating_languages
. \n \n\nReturns: \n\n\n the languages to serve as the next generation (after possible mutations)
\n \n", "signature": "(\tdominating_languages : set [ ultk . language . language . Language ] , \texplored_languages : set [ ultk . language . language . Language ] , \texplore : float ) -> list [ ultk . language . language . Language ] : ", "funcdef": "def"}, "ultk.effcomm.sampling": {"fullname": "ultk.effcomm.sampling", "modulename": "ultk.effcomm.sampling", "kind": "module", "doc": "Functions for sampling expressions into languages.
\n"}, "ultk.effcomm.sampling.get_hypothetical_variants": {"fullname": "ultk.effcomm.sampling.get_hypothetical_variants", "modulename": "ultk.effcomm.sampling", "qualname": "get_hypothetical_variants", "kind": "function", "doc": "For each system (parameterized by a language or else a speaker), generate num
hypothetical variants by permuting the signals that the system assigns to states.
\n\nArguments: \n\n\nlanguages: a list of languages to permute, by constructing LiteralSpeakers and permuting their weights. \nspeakers: a list of speakers of a language, whose weights can be directly permuted. Should be used instead of languages
if possible, because it can be more finegrained (every language can be associated with multiple speakers). \ntotal: the total number of hypothetical variants to obtain \n \n\nReturns: \n\n\n hypothetical_variants: a list of type either Language or np.ndarray depending on whether languages
or speakers
was passed, representing hypothetical variants of the systems passed. If speakers
was passed, a list of speakers is returned.
\n \n", "signature": "(\tlanguages : list [ ultk . language . language . Language ] = None , \tspeakers : list [ ultk . effcomm . agent . Speaker ] = None , \ttotal : int = 0 ) -> list [ typing . Any ] : ", "funcdef": "def"}, "ultk.effcomm.tradeoff": {"fullname": "ultk.effcomm.tradeoff", "modulename": "ultk.effcomm.tradeoff", "kind": "module", "doc": "Functions for constructing an efficient communication analysis by measuring the simplicity/informativeness trade-off languages and formatting results as a dataframe or a plot.
\n"}, "ultk.effcomm.tradeoff.dominates": {"fullname": "ultk.effcomm.tradeoff.dominates", "modulename": "ultk.effcomm.tradeoff", "qualname": "dominates", "kind": "function", "doc": "Determine whether p1 dominates p2,\ni.e. whether for every i p1[i] <= p2[i]\nand for some i p1[i] < p2[i].
\n\nArguments: \n\n\np1: a point \np2: another point \n \n\nReturns: \n\n\n whether or not p1 dominates p2
\n \n", "signature": "(p1 : list [ float ] , p2 : list [ float ] ) -> bool : ", "funcdef": "def"}, "ultk.effcomm.tradeoff.non_dominated_2d": {"fullname": "ultk.effcomm.tradeoff.non_dominated_2d", "modulename": "ultk.effcomm.tradeoff", "qualname": "non_dominated_2d", "kind": "function", "doc": "Return the non-dominated (Pareto) front of a list of 2-D points, using Kung's algorithm.
\n\nArguments: \n\n\npoints: A list of 2-D points \n \n\nReturns: \n\n\n a list, the indices of points
for which no other point is as good on all dimensions\n and better on at least one
\n \n", "signature": "(points : list [ tuple [ float , float ]] ) -> list [ int ] : ", "funcdef": "def"}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"fullname": "ultk.effcomm.tradeoff.pareto_optimal_languages", "modulename": "ultk.effcomm.tradeoff", "qualname": "pareto_optimal_languages", "kind": "function", "doc": "Use non_dominated_2d to compute the Pareto languages.
\n", "signature": "(\tlanguages : list [ ultk . language . language . Language ] , \tobjectives : list [ typing . Callable [[ ultk . language . language . Language ], typing . Any ]] , \tunique : bool = False ) -> list [ ultk . language . language . Language ] : ", "funcdef": "def"}, "ultk.effcomm.tradeoff.pareto_min_distances": {"fullname": "ultk.effcomm.tradeoff.pareto_min_distances", "modulename": "ultk.effcomm.tradeoff", "qualname": "pareto_min_distances", "kind": "function", "doc": "Measure the Pareto optimality of each language by measuring its Euclidean closeness to the frontier. The frontier is a line (list of points) interpolated from the pareto points.
\n\nArguments: \n\n\npoints: the list of all language (x, y) pairs, where x and y are usually communicative cost and complexity. \npareto_points: the list of all dominant language (x, y) pairs to constitute the Pareto frontier. The points should have been measured by pygmo's non_dominated_front_2d function. \n \n\nReturns: \n\n\n min_distances: an array of shape len(points)
Euclidean distances for each language to the closest point on the Pareto frontier.
\n \n", "signature": "(points : list [ tuple ] , pareto_points : list [ tuple ] ) -> numpy . ndarray : ", "funcdef": "def"}, "ultk.effcomm.tradeoff.interpolate_data": {"fullname": "ultk.effcomm.tradeoff.interpolate_data", "modulename": "ultk.effcomm.tradeoff", "qualname": "interpolate_data", "kind": "function", "doc": "Interpolate the points yielded by the pareto optimal languages into a continuous (though not necessarily smooth) curve.
\n\nArguments: \n\n\npoints: an list of (comm_cost, complexity) pairs of size [dominating_languages], a possibly non-smooth set of solutions to the trade-off. \nmin_cost: the minimum communicative cost value possible to interpolate from. \nmax_cost: the maximum communicative cost value possible to interpolate from. A natural assumption is to let complexity=0.0 if max_cost=1.0, which will result in a Pareto curve that spans the entire 2d space, and consequently the plot with x and y limits both ranging [0.0, 1.0]. \nnum: the number of x-axis points (cost) to interpolate. Controls smoothness of curve. \n \n\nReturns: \n\n\n interpolated_points: an array of size (num, num)
\n \n", "signature": "(\tpoints : list [ tuple [ float ]] , \tmin_cost : float = 0.0 , \tmax_cost : float = 1.0 , \tnum = 5000 ) -> numpy . ndarray : ", "funcdef": "def"}, "ultk.effcomm.tradeoff.tradeoff": {"fullname": "ultk.effcomm.tradeoff.tradeoff", "modulename": "ultk.effcomm.tradeoff", "qualname": "tradeoff", "kind": "function", "doc": "Builds a final efficient communication analysis by measuring a list of languages, updating their internal data, and returning the results.
\n\nThis function measures possibly many graded or categorical properties of each language, but minimally the properties of commmunicative cost and complexity. These two measures fully define the results of an efficiency analysis, in the sense they define the optimal solutions.
\n\nArguments: \n\n\nlanguages: A list representing the pool of all languages to be measured for an efficient communication analysis. \nx: the first pressure to measure, e.g. communicative cost. \ny: the second pressure to measure, e.g. cognitive complexity. \nfrontier: a list of (comm_cost, complexity) points representing a Pareto frontier to measure optimality w.r.t. \n \n\nReturns: \n\n\n a dictionary of the population and the pareto front, of the form
\n\n{\n \"languages\": the list of languages, with their internal efficient communication data updated,\n\n \"dominating_languages\": the list of the languages dominating the population w.r.t. comm_cost and complexity. If no `frontier` is none, this can be considered the Pareto frontier.\n}\n
\n \n", "signature": "(\tlanguages : list [ ultk . language . language . Language ] , \tproperties : dict [ str , typing . Callable [[ ultk . language . language . Language ], typing . Any ]] , \tx : str = 'comm_cost' , \ty : str = 'complexity' , \tfrontier : list [ tuple ] = None ) -> dict [ str , list [ ultk . language . language . Language ]] : ", "funcdef": "def"}, "ultk.effcomm.util": {"fullname": "ultk.effcomm.util", "modulename": "ultk.effcomm.util", "kind": "module", "doc": "Various helper functions for computing complexity and informativity.
\n"}, "ultk.effcomm.util.rows_zero_to_uniform": {"fullname": "ultk.effcomm.util.rows_zero_to_uniform", "modulename": "ultk.effcomm.util", "qualname": "rows_zero_to_uniform", "kind": "function", "doc": "Ensure that mat
encodes a probability distribution, i.e. each row (indexed by a meaning) is a distribution over expressions: sums to exactly 1.0.
\n\nThis is necessary when exploring mathematically possible languages (including natural languages, like Hausa in the case of modals) which sometimes have that a row of the matrix p(word|meaning) is a vector of 0s.
\n\nArguments: \n\n\nmat: a 2D numpy array that should be normalized so that each row is a probability distribution. \n \n", "signature": "(mat : numpy . ndarray ) -> numpy . ndarray : ", "funcdef": "def"}, "ultk.effcomm.util.build_utility_matrix": {"fullname": "ultk.effcomm.util.build_utility_matrix", "modulename": "ultk.effcomm.util", "qualname": "build_utility_matrix", "kind": "function", "doc": "Construct the square matrix specifying the utility function defined for pairs of meanings, used for computing communicative success.
\n", "signature": "(\tuniverse : ultk . language . semantics . Universe , \tutility : Callable [[ ultk . language . semantics . Referent , ultk . language . semantics . Referent ], float ] ) -> numpy . ndarray : ", "funcdef": "def"}, "ultk.effcomm.util.PRECISION": {"fullname": "ultk.effcomm.util.PRECISION", "modulename": "ultk.effcomm.util", "qualname": "PRECISION", "kind": "variable", "doc": "
\n", "default_value": "1e-16"}, "ultk.effcomm.util.marginal": {"fullname": "ultk.effcomm.util.marginal", "modulename": "ultk.effcomm.util", "qualname": "marginal", "kind": "function", "doc": "Compute $p(x) = \\sum_x p(x,y)$
\n\nArguments: \n\n\npXY: a numpy array of shape (|X|, |Y|)
\n \n\nReturns: \n\n\n pY: (axis = 0) or pX (default, axis = 1)
\n \n", "signature": "(pXY , axis = 1 ): ", "funcdef": "def"}, "ultk.effcomm.util.conditional": {"fullname": "ultk.effcomm.util.conditional", "modulename": "ultk.effcomm.util", "qualname": "conditional", "kind": "function", "doc": "Compute $p(y|x) = \\frac{p(x,y)}{p(x)}$
\n\nArguments: \n\n\npXY: a numpy array of shape (|X|, |Y|)
\n \n\nReturns: \n\n\n pY_X: a numpy array of shape (|X|, |Y|)
\n \n", "signature": "(pXY ): ", "funcdef": "def"}, "ultk.effcomm.util.joint": {"fullname": "ultk.effcomm.util.joint", "modulename": "ultk.effcomm.util", "qualname": "joint", "kind": "function", "doc": "Compute $p(x,y) = p(y|x) \\cdot p(x) $
\n\nArguments: \n\n\npY_X: a numpy array of shape (|X|, |Y|)
\npX: a numpy array |X|
\n \n\nReturns: \n\n\n pXY: a numpy array of the shape (|X|, |Y|)
\n \n", "signature": "(pY_X , pX ): ", "funcdef": "def"}, "ultk.effcomm.util.marginalize": {"fullname": "ultk.effcomm.util.marginalize", "modulename": "ultk.effcomm.util", "qualname": "marginalize", "kind": "function", "doc": "Compute $p(y) = \\sum_x p(y|x) \\cdot p(x)$
\n\nArguments: \n\n\npY_X: a numpy array of shape (|X|, |Y|)
\npX: a numpy array of shape |X|
\n \n\nReturns: \n\n\n pY: a numpy array of shape |Y|
\n \n", "signature": "(pY_X , pX ): ", "funcdef": "def"}, "ultk.effcomm.util.bayes": {"fullname": "ultk.effcomm.util.bayes", "modulename": "ultk.effcomm.util", "qualname": "bayes", "kind": "function", "doc": "Compute $p(x|y) = \\frac{p(y|x) \\cdot p(x)}{p(y)}$
\n\nArguments: \n\n\npY_X: a numpy array of shape (|X|, |Y|)
\n \n", "signature": "(pY_X , pX ): ", "funcdef": "def"}, "ultk.effcomm.util.xlogx": {"fullname": "ultk.effcomm.util.xlogx", "modulename": "ultk.effcomm.util", "qualname": "xlogx", "kind": "function", "doc": "Compute $x \\log p(x)$
\n", "signature": "(p ): ", "funcdef": "def"}, "ultk.effcomm.util.H": {"fullname": "ultk.effcomm.util.H", "modulename": "ultk.effcomm.util", "qualname": "H", "kind": "function", "doc": "Compute the entropy of p, $H(X) = - \\sum_x x \\log p(x)$
\n", "signature": "(p , axis = None ): ", "funcdef": "def"}, "ultk.effcomm.util.MI": {"fullname": "ultk.effcomm.util.MI", "modulename": "ultk.effcomm.util", "qualname": "MI", "kind": "function", "doc": "Compute mutual information, $I[X:Y]$
\n", "signature": "(pXY ): ", "funcdef": "def"}, "ultk.effcomm.util.DKL": {"fullname": "ultk.effcomm.util.DKL", "modulename": "ultk.effcomm.util", "qualname": "DKL", "kind": "function", "doc": "Compute KL divergences, $D_{KL}[p~||~q]$
\n", "signature": "(p , q , axis = None ): ", "funcdef": "def"}, "ultk.effcomm.util.gNID": {"fullname": "ultk.effcomm.util.gNID", "modulename": "ultk.effcomm.util", "qualname": "gNID", "kind": "function", "doc": "Compute Generalized Normalized Informational Distance between two encoders.
\n\nArguments: \n\n\npW_X: first encoder of shape (|meanings|, |words|)
\npV_X: second encoder of shape (|meanings|, |words|)
\npX: prior over source variables of shape (|meanings|,)
\n \n", "signature": "(pW_X , pV_X , pX ): ", "funcdef": "def"}, "ultk.language": {"fullname": "ultk.language", "modulename": "ultk.language", "kind": "module", "doc": "Classes for modeling (natural or hypothetical) languagese.
\n\nAt the current stage of development, ULTK focuses on supporting abstractions to model the mapping between expressions and meanings of a language. So far, we leave almost everything besides this basic mapping (morphosyntax, phonology, phonetic inventories, among other features of human languages) to future work.
\n\nThe ultk.language.language
submodule contains classes for constructing a language, which can contain one or more expressions.
\n\nThe ultk.language.semantics
submodule contains classes for defining a universe (meaning space) of referents (denotations) and meanings (categories).
\n"}, "ultk.language.grammar": {"fullname": "ultk.language.grammar", "modulename": "ultk.language.grammar", "kind": "module", "doc": "
\n"}, "ultk.language.grammar.Rule": {"fullname": "ultk.language.grammar.Rule", "modulename": "ultk.language.grammar", "qualname": "Rule", "kind": "class", "doc": "Basic class for a grammar rule. Grammar rules in ULTK correspond\nto functions. One can think of a grammar as generating complex functions from\nmore basic ones.
\n\nAttributes: \n\n\nlhs: left-hand side of the rule (can be anything)\nconceptually, the output type of a function \nrhs: right-hand side; assumed to be an iterable\nconceptually, a list of types of inputs \nfunc: a callable, the function to be computed when a node with this rule is executed \nname: name of the function \nweight: a relative weight to assign to this rule\nwhen added to a grammar, all rules with the same LHS will be weighted together \n \n"}, "ultk.language.grammar.Rule.__init__": {"fullname": "ultk.language.grammar.Rule.__init__", "modulename": "ultk.language.grammar", "qualname": "Rule.__init__", "kind": "function", "doc": "
\n", "signature": "(\tname : str , \tlhs : Any , \trhs : collections . abc . Sequence | None , \tfunction : Callable = < function Rule .< lambda >> , \tweight : float = 1.0 ) "}, "ultk.language.grammar.Rule.lhs": {"fullname": "ultk.language.grammar.Rule.lhs", "modulename": "ultk.language.grammar", "qualname": "Rule.lhs", "kind": "variable", "doc": "
\n"}, "ultk.language.grammar.Rule.rhs": {"fullname": "ultk.language.grammar.Rule.rhs", "modulename": "ultk.language.grammar", "qualname": "Rule.rhs", "kind": "variable", "doc": "
\n"}, "ultk.language.grammar.Rule.func": {"fullname": "ultk.language.grammar.Rule.func", "modulename": "ultk.language.grammar", "qualname": "Rule.func", "kind": "variable", "doc": "
\n"}, "ultk.language.grammar.Rule.name": {"fullname": "ultk.language.grammar.Rule.name", "modulename": "ultk.language.grammar", "qualname": "Rule.name", "kind": "variable", "doc": "
\n"}, "ultk.language.grammar.Rule.weight": {"fullname": "ultk.language.grammar.Rule.weight", "modulename": "ultk.language.grammar", "qualname": "Rule.weight", "kind": "variable", "doc": "
\n"}, "ultk.language.grammar.Rule.is_terminal": {"fullname": "ultk.language.grammar.Rule.is_terminal", "modulename": "ultk.language.grammar", "qualname": "Rule.is_terminal", "kind": "function", "doc": "Whether this is a terminal rule. In our framework, this means that RHS is empty,\ni.e. there are no arguments to the function.
\n", "signature": "(self ) -> bool : ", "funcdef": "def"}, "ultk.language.grammar.GrammaticalExpression": {"fullname": "ultk.language.grammar.GrammaticalExpression", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression", "kind": "class", "doc": "A GrammaticalExpression has been built up from a Grammar by applying a sequence of Rules.\nCrucially, it is _callable_, using the functions corresponding to each rule.
\n\nA GrammaticalExpression, when called, takes in a Referent. Because of this, a Meaning can\nbe generated by specifying a Universe (which contains Referents).
\n\nAttributes: \n\n\nname: name of the top-most function \nfunc: the function \nchildren: child expressions (possibly empty) \n \n", "bases": "ultk.language.language.Expression"}, "ultk.language.grammar.GrammaticalExpression.__init__": {"fullname": "ultk.language.grammar.GrammaticalExpression.__init__", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.__init__", "kind": "function", "doc": "
\n", "signature": "(\trule_name : str , \tfunc : Callable , \tchildren : tuple | None , \tmeaning : ultk . language . semantics . Meaning | None = None , \tform : str | None = None ) "}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"fullname": "ultk.language.grammar.GrammaticalExpression.rule_name", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.rule_name", "kind": "variable", "doc": "
\n"}, "ultk.language.grammar.GrammaticalExpression.func": {"fullname": "ultk.language.grammar.GrammaticalExpression.func", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.func", "kind": "variable", "doc": "
\n"}, "ultk.language.grammar.GrammaticalExpression.children": {"fullname": "ultk.language.grammar.GrammaticalExpression.children", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.children", "kind": "variable", "doc": "
\n"}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"fullname": "ultk.language.grammar.GrammaticalExpression.yield_string", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.yield_string", "kind": "function", "doc": "Get the 'yield' string of this term, i.e. the concatenation\nof the leaf nodes.
\n\nThis is useful for thinking of a Grammar
as generating derivation trees for\nan underlying CFG. This method will then generate the strings generated by\nthe corresponding CFG.
\n", "signature": "(self ) -> str : ", "funcdef": "def"}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"fullname": "ultk.language.grammar.GrammaticalExpression.evaluate", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.evaluate", "kind": "function", "doc": "
\n", "signature": "(\tself , \tuniverse : ultk . language . semantics . Universe ) -> ultk . language . semantics . Meaning : ", "funcdef": "def"}, "ultk.language.grammar.GrammaticalExpression.add_child": {"fullname": "ultk.language.grammar.GrammaticalExpression.add_child", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.add_child", "kind": "function", "doc": "
\n", "signature": "(self , child ) -> None : ", "funcdef": "def"}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"fullname": "ultk.language.grammar.GrammaticalExpression.to_dict", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.to_dict", "kind": "function", "doc": "
\n", "signature": "(self ) -> dict : ", "funcdef": "def"}, "ultk.language.grammar.UniquenessArgs": {"fullname": "ultk.language.grammar.UniquenessArgs", "modulename": "ultk.language.grammar", "qualname": "UniquenessArgs", "kind": "class", "doc": "Arguments for specifying uniqueness of GrammaticalExpressions in a Grammar.
\n\nAttributes: \n\n\nunique_expressions: a dictionary in which to store unique Expressions \nkey: a function used to evaluate uniqueness \ncompare_func: a comparison function, used to decide which Expression to add to the dict\nnew Expressions will be added as values to unique_dict
only if they are minimal\namong those sharing the same key (by unique_key
) according to this func \n \n", "bases": "typing.TypedDict"}, "ultk.language.grammar.UniquenessArgs.unique_expressions": {"fullname": "ultk.language.grammar.UniquenessArgs.unique_expressions", "modulename": "ultk.language.grammar", "qualname": "UniquenessArgs.unique_expressions", "kind": "variable", "doc": "
\n", "annotation": ": dict[typing.Any, dict[typing.Any, ultk.language.grammar.GrammaticalExpression]]"}, "ultk.language.grammar.UniquenessArgs.key": {"fullname": "ultk.language.grammar.UniquenessArgs.key", "modulename": "ultk.language.grammar", "qualname": "UniquenessArgs.key", "kind": "variable", "doc": "
\n", "annotation": ": Callable[[ultk.language.grammar.GrammaticalExpression], Any]"}, "ultk.language.grammar.UniquenessArgs.compare_func": {"fullname": "ultk.language.grammar.UniquenessArgs.compare_func", "modulename": "ultk.language.grammar", "qualname": "UniquenessArgs.compare_func", "kind": "variable", "doc": "
\n", "annotation": ": Callable[[ultk.language.grammar.GrammaticalExpression, ultk.language.grammar.GrammaticalExpression], bool]"}, "ultk.language.grammar.Grammar": {"fullname": "ultk.language.grammar.Grammar", "modulename": "ultk.language.grammar", "qualname": "Grammar", "kind": "class", "doc": "At its core, a Grammar is a set of Rules with methods for generating GrammaticalExpressions.
\n"}, "ultk.language.grammar.Grammar.__init__": {"fullname": "ultk.language.grammar.Grammar.__init__", "modulename": "ultk.language.grammar", "qualname": "Grammar.__init__", "kind": "function", "doc": "
\n", "signature": "(start : Any ) "}, "ultk.language.grammar.Grammar.add_rule": {"fullname": "ultk.language.grammar.Grammar.add_rule", "modulename": "ultk.language.grammar", "qualname": "Grammar.add_rule", "kind": "function", "doc": "
\n", "signature": "(self , rule : ultk . language . grammar . Rule ): ", "funcdef": "def"}, "ultk.language.grammar.Grammar.parse": {"fullname": "ultk.language.grammar.Grammar.parse", "modulename": "ultk.language.grammar", "qualname": "Grammar.parse", "kind": "function", "doc": "Parse a string representation of an expression of a grammar.\nNote that this is not a general-purpose parsing algorithm. We assume that the strings are of the form\n parent_name(child1_name, ..., childn_name)\nwhere parent_name is the name of a rule of this grammar that has a length-n RHS, and that\nchildi_name is the name of a rule for each child i.
\n\nArguments: \n\n\nexpression: string in the above format \n \n\nReturns: \n\n\n the corresponding GrammaticalExpression
\n \n", "signature": "(\tself , \texpression : str , \topener : str = '(' , \tcloser : str = ')' , \tdelimiter : str = ',' ) -> ultk . language . grammar . GrammaticalExpression : ", "funcdef": "def"}, "ultk.language.grammar.Grammar.generate": {"fullname": "ultk.language.grammar.Grammar.generate", "modulename": "ultk.language.grammar", "qualname": "Grammar.generate", "kind": "function", "doc": "Generate an expression from a given lhs.
\n", "signature": "(self , lhs : Any = None ) -> ultk . language . grammar . GrammaticalExpression : ", "funcdef": "def"}, "ultk.language.grammar.Grammar.enumerate": {"fullname": "ultk.language.grammar.Grammar.enumerate", "modulename": "ultk.language.grammar", "qualname": "Grammar.enumerate", "kind": "function", "doc": "Enumerate all expressions from the grammar up to a given depth from a given LHS.\nThis method also can update a specified dictionary to store only _unique_ expressions, with\na user-specified criterion of uniqueness.
\n\nArguments: \n\n\ndepth: how deep the trees should be \nlhs: left hand side to start from; defaults to the grammar's start symbol \nuniqueness_args: a dictionary specifying the parameters for uniqueness:\nunique_dict: a dictionary in which to store unique Expressions\nkey: a function used to evaluate uniqueness\ncompare_func: a comparison function, used to decide which Expression to add to the dict\n new Expressions will be added as values to unique_dict
only if they are _minimal_\n among those sharing the same key (by unique_key
) according to this func \n \n\nYields: \n\n\n all GrammaticalExpressions up to depth
\n \n", "signature": "(\tself , \tdepth : int = 8 , \tlhs : Any = None , \tuniqueness_args : ultk . language . grammar . UniquenessArgs | None = None ) -> Generator [ ultk . language . grammar . GrammaticalExpression , NoneType , NoneType ] : ", "funcdef": "def"}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"fullname": "ultk.language.grammar.Grammar.enumerate_at_depth", "modulename": "ultk.language.grammar", "qualname": "Grammar.enumerate_at_depth", "kind": "function", "doc": "Enumerate GrammaticalExpressions for this Grammar _at_ a fixed depth.
\n", "signature": "(\tself , \tdepth : int , \tlhs : Any , \tuniqueness_args : ultk . language . grammar . UniquenessArgs | None = None , \tcache : dict | None = None ) -> Generator [ ultk . language . grammar . GrammaticalExpression , NoneType , NoneType ] : ", "funcdef": "def"}, "ultk.language.grammar.Grammar.get_unique_expressions": {"fullname": "ultk.language.grammar.Grammar.get_unique_expressions", "modulename": "ultk.language.grammar", "qualname": "Grammar.get_unique_expressions", "kind": "function", "doc": "Get all unique GrammaticalExpressions, up to a certain depth, with a user-specified criterion\nof uniqueness, and a specified comparison function for determining which Expression to save when there's a clash.\nThis can be used, for instance, to measure the minimum description length of some\nMeanings, by using expression.evaluate(), which produces a Meaning for an Expression, as the\nkey for determining uniqueness, and length of the expression as comparison.
\n\nThis is a wrapper around enumerate
, but which produces the dictionary of key->Expression entries\nand returns it. (enumerate
is a generator with side effects).
\n\nFor Args, see the docstring for enumerate
.
\n\nNote: if you additionally want to store _all_ expressions, and not just the unique ones, you should\ndirectly use enumerate
.
\n\nReturns: \n\n\n dictionary of {key: GrammaticalExpression}, where the keys are generated by unique_key
\n The GrammticalExpression which is the value will be the one that is minimum among\n compare_func
amongst all Expressions up to depth
which share the same key
\n \n", "signature": "(\tself , \tdepth : int , \tunique_key : Callable [[ ultk . language . grammar . GrammaticalExpression ], Any ] , \tcompare_func : Callable [[ ultk . language . grammar . GrammaticalExpression , ultk . language . grammar . GrammaticalExpression ], bool ] , \tlhs : Any = None , \tmax_size : float = inf ) -> dict [ ultk . language . grammar . GrammaticalExpression , typing . Any ] : ", "funcdef": "def"}, "ultk.language.grammar.Grammar.get_all_rules": {"fullname": "ultk.language.grammar.Grammar.get_all_rules", "modulename": "ultk.language.grammar", "qualname": "Grammar.get_all_rules", "kind": "function", "doc": "Get all rules as a list.
\n", "signature": "(self ) -> list [ ultk . language . grammar . Rule ] : ", "funcdef": "def"}, "ultk.language.grammar.Grammar.from_yaml": {"fullname": "ultk.language.grammar.Grammar.from_yaml", "modulename": "ultk.language.grammar", "qualname": "Grammar.from_yaml", "kind": "function", "doc": "Read a grammar specified in a simple YAML format.
\n\nExpected format:
\n\nstart: bool\nrules:\n- lhs: bool\n rhs:\n - bool\n - bool\n name: \"and\"\n function: \"lambda p1, p2 : p1 and p2\"\n- lhs: bool\n rhs:\n - bool\n - bool\n name: \"or\"\n function: \"lambda p1, p2 : p1 or p2\"\n
\n\nNote that for each fule, the value for function
will be passed to\neval
, so be careful!
\n\nArguments: \n\n\nfilename: file containing a grammar in the above format \n \n", "signature": "(cls , filename : str ): ", "funcdef": "def"}, "ultk.language.language": {"fullname": "ultk.language.language", "modulename": "ultk.language.language", "kind": "module", "doc": "Classes for modeling languages as form-meaning mappings, most important among them the Language and Expression classes.
\n\nExample usage: \n\n\n \n
>>> from ultk.language.language import Expression , Language \n>>> # assuming the meaning `a_few_meaning` has already been constructed \n>>> # define the expression \n>>> a_few = NumeralExpression ( form = "a few" , meaning = a_few_meaning ) \n>>> # define a very small language \n>>> lang_1 = Language ([ a_few ]) \n>>> # or a slightly larger one with synonymy \n>>> lang_2 = Language ([ a_few ] * 3 ) \n
\n
\n \n"}, "ultk.language.language.Expression": {"fullname": "ultk.language.language.Expression", "modulename": "ultk.language.language", "qualname": "Expression", "kind": "class", "doc": "Minimally contains a form and a meaning.
\n"}, "ultk.language.language.Expression.__init__": {"fullname": "ultk.language.language.Expression.__init__", "modulename": "ultk.language.language", "qualname": "Expression.__init__", "kind": "function", "doc": "
\n", "signature": "(\tform : str | None = None , \tmeaning : ultk . language . semantics . Meaning | None = None ) "}, "ultk.language.language.Expression.form": {"fullname": "ultk.language.language.Expression.form", "modulename": "ultk.language.language", "qualname": "Expression.form", "kind": "variable", "doc": "
\n"}, "ultk.language.language.Expression.meaning": {"fullname": "ultk.language.language.Expression.meaning", "modulename": "ultk.language.language", "qualname": "Expression.meaning", "kind": "variable", "doc": "
\n"}, "ultk.language.language.Expression.can_express": {"fullname": "ultk.language.language.Expression.can_express", "modulename": "ultk.language.language", "qualname": "Expression.can_express", "kind": "function", "doc": "Return True if the expression can express the input single meaning point and false otherwise.
\n", "signature": "(self , referent : ultk . language . semantics . Referent ) -> bool : ", "funcdef": "def"}, "ultk.language.language.Expression.to_dict": {"fullname": "ultk.language.language.Expression.to_dict", "modulename": "ultk.language.language", "qualname": "Expression.to_dict", "kind": "function", "doc": "
\n", "signature": "(self ) -> dict : ", "funcdef": "def"}, "ultk.language.language.Language": {"fullname": "ultk.language.language.Language", "modulename": "ultk.language.language", "qualname": "Language", "kind": "class", "doc": "Minimally contains Expression objects.
\n"}, "ultk.language.language.Language.__init__": {"fullname": "ultk.language.language.Language.__init__", "modulename": "ultk.language.language", "qualname": "Language.__init__", "kind": "function", "doc": "
\n", "signature": "(expressions : tuple [ ultk . language . language . Expression , ... ] , ** kwargs ) "}, "ultk.language.language.Language.expressions": {"fullname": "ultk.language.language.Language.expressions", "modulename": "ultk.language.language", "qualname": "Language.expressions", "kind": "variable", "doc": "
\n", "annotation": ": tuple[ultk.language.language.Expression, ...]"}, "ultk.language.language.Language.universe": {"fullname": "ultk.language.language.Language.universe", "modulename": "ultk.language.language", "qualname": "Language.universe", "kind": "variable", "doc": "
\n", "annotation": ": ultk.language.semantics.Universe"}, "ultk.language.language.Language.add_expression": {"fullname": "ultk.language.language.Language.add_expression", "modulename": "ultk.language.language", "qualname": "Language.add_expression", "kind": "function", "doc": "Add an expression to the list of expressions in a language.
\n", "signature": "(self , e : ultk . language . language . Expression ): ", "funcdef": "def"}, "ultk.language.language.Language.pop": {"fullname": "ultk.language.language.Language.pop", "modulename": "ultk.language.language", "qualname": "Language.pop", "kind": "function", "doc": "Removes an expression at the specified index of the list of expressions, and returns it.
\n", "signature": "(self , index : int ) -> ultk . language . language . Expression : ", "funcdef": "def"}, "ultk.language.language.Language.is_natural": {"fullname": "ultk.language.language.Language.is_natural", "modulename": "ultk.language.language", "qualname": "Language.is_natural", "kind": "function", "doc": "Whether a language represents a human natural language.
\n", "signature": "(self ) -> bool : ", "funcdef": "def"}, "ultk.language.language.Language.degree_property": {"fullname": "ultk.language.language.Language.degree_property", "modulename": "ultk.language.language", "qualname": "Language.degree_property", "kind": "function", "doc": "Count what percentage of expressions in a language have a given property.
\n", "signature": "(\tself , \tproperty : Callable [[ ultk . language . language . Expression ], bool ] ) -> float : ", "funcdef": "def"}, "ultk.language.language.Language.binary_matrix": {"fullname": "ultk.language.language.Language.binary_matrix", "modulename": "ultk.language.language", "qualname": "Language.binary_matrix", "kind": "function", "doc": "Get a binary matrix of shape (num_meanings, num_expressions)
\nspecifying which expressions can express which meanings.
\n", "signature": "(self ) -> numpy . ndarray : ", "funcdef": "def"}, "ultk.language.language.Language.to_dict": {"fullname": "ultk.language.language.Language.to_dict", "modulename": "ultk.language.language", "qualname": "Language.to_dict", "kind": "function", "doc": "
\n", "signature": "(self , ** kwargs ) -> dict : ", "funcdef": "def"}, "ultk.language.language.aggregate_expression_complexity": {"fullname": "ultk.language.language.aggregate_expression_complexity", "modulename": "ultk.language.language", "qualname": "aggregate_expression_complexity", "kind": "function", "doc": "Aggregate complexities for individual Expression
s into a complexity for a Language
.
\n\nArguments: \n\n\nlanguage: the Language to measure \nexpression_complexity_func: the function that returns the complexity of an individual expression \naggregator: (optional, default = sum) the function that aggregates individual complexities \n \n\nReturns: \n\n\n a float, the complexity of a language
\n \n", "signature": "(\tlanguage : ultk . language . language . Language , \texpression_complexity_func : Callable [[ ultk . language . language . Expression ], float ] , \taggregator : Callable [[ Iterable [ float ]], float ] = < built - in function sum > ) -> float : ", "funcdef": "def"}, "ultk.language.sampling": {"fullname": "ultk.language.sampling", "modulename": "ultk.language.sampling", "kind": "module", "doc": "
\n"}, "ultk.language.sampling.powerset": {"fullname": "ultk.language.sampling.powerset", "modulename": "ultk.language.sampling", "qualname": "powerset", "kind": "function", "doc": "Enumerate all _non-empty_ subsets of an iterable up to a given maximum size, e.g.:\npowerset([1,2,3]) --> (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)
\n\nlightly adapted from itertools Recipes at\nhttps://docs.python.org/3/library/itertools.html#itertools-recipes
\n\nArguments: \n\n\niterable: elements from which to form subsets \nmax_size: largest subsets (inclusive) to return \n \n\nReturns: \n\n\n iterator over all subsets from size 1 to max_size
of elements from iterable
\n \n", "signature": "(iterable : Iterable , max_size : int = None ) -> Iterable : ", "funcdef": "def"}, "ultk.language.sampling.all_meanings": {"fullname": "ultk.language.sampling.all_meanings", "modulename": "ultk.language.sampling", "qualname": "all_meanings", "kind": "function", "doc": "Generate all Meanings (sets of Referents) from a given Universe.
\n", "signature": "(\tuniverse : ultk . language . semantics . Universe ) -> Generator [ ultk . language . semantics . Meaning , NoneType , NoneType ] : ", "funcdef": "def"}, "ultk.language.sampling.all_expressions": {"fullname": "ultk.language.sampling.all_expressions", "modulename": "ultk.language.sampling", "qualname": "all_expressions", "kind": "function", "doc": "Generate Expressions from an iterable of Meanings.
\n", "signature": "(\tmeanings : Iterable [ ultk . language . semantics . Meaning ] ) -> Generator [ ultk . language . language . Expression , NoneType , NoneType ] : ", "funcdef": "def"}, "ultk.language.sampling.all_languages": {"fullname": "ultk.language.sampling.all_languages", "modulename": "ultk.language.sampling", "qualname": "all_languages", "kind": "function", "doc": "Generate all Languages (sets of Expressions) from a given set of Expressions.
\n\nArguments: \n\n\nexpressions: iterable of all possible expressions \nlanguage_class: the type of language to generate \nmax_size: largest size for a language; if None, all subsets of expressions will be used \n \n\nYields: \n\n\n Languages with subsets of Expressions from expressions
\n \n", "signature": "(\texpressions : Iterable [ ultk . language . language . Expression ] , \tlanguage_class: Type[ultk.language.language.Language] = <class 'ultk.language.language.Language'>, \tmax_size : int = None ) -> Generator [ ultk . language . language . Language , NoneType , NoneType ] : ", "funcdef": "def"}, "ultk.language.sampling.upto_comb": {"fullname": "ultk.language.sampling.upto_comb", "modulename": "ultk.language.sampling", "qualname": "upto_comb", "kind": "function", "doc": "Return the number of ways of choosing _up to max_k_ items from\nn items without repetition. Just an iterator of math.comb for n from\n1 to max_k.
\n", "signature": "(num : int , max_k : int ) -> int : ", "funcdef": "def"}, "ultk.language.sampling.random_languages": {"fullname": "ultk.language.sampling.random_languages", "modulename": "ultk.language.sampling", "qualname": "random_languages", "kind": "function", "doc": "Generate unique Languages by randomly sampling subsets of Expressions, either in a uniform or stratified way.\nIf there are fewer than sample_size
possible Languages up to size max_size
,\nthis method will just return all languages up to that size (and so the sample may\nbe smaller than sample_size
).
\n\nSome use cases:
\n\nWith sample_size=None
, get all languages.
\n\n\n
>>> random_languages ( expressions ) \n
\n
\n\nWith sample_size
and uniform sampling, get random languages:
\n\n\n
>>> random_languages ( expressions , sample_size = 1000 ) \n
\n
\n\nStratified sampling, with and without a max_size
:
\n\n\n
>>> random_languages ( expressions , sample_size = 1000 , sampling_strategy = "stratified" ) \n>>> random_languages ( expressions , sample_size = 1000 , sampling_strategy = "stratified" , max_size = 10 ) \n
\n
\n\nArguments: \n\n\nexpressions: all possible expressions \nsampling_strategy: how to sample subsets of expressions\nuniform: for every expression, choose whether or not to include it in a given language\nstratified: first sample a size for a Language, then choose that many random Expressions\n (i) this has the effect of \"upsampling\" from smaller Language sizes\n (ii) this can be used with max_size
to only generate Languages up to a given number of expressions \nsample_size: how many languages to return\nif None, will return all languages up to max_size
\nlanguage_class: type of Language \nmax_size: largest possible Language to generate\nif None, will be the length of expressions
\nNB: this argument has no effect when sampling_strategy
is \"uniform\" \n \n\nReturns: \n\n\n a list of randomly sampled Languages
\n \n", "signature": "(\texpressions : Iterable [ ultk . language . language . Expression ] , \tsampling_strategy : str = 'uniform' , \tsample_size : int = None , \tlanguage_class: Type[ultk.language.language.Language] = <class 'ultk.language.language.Language'>, \tmax_size : int = None ) -> list [ ultk . language . language . Language ] : ", "funcdef": "def"}, "ultk.language.sampling.generate_languages": {"fullname": "ultk.language.sampling.generate_languages", "modulename": "ultk.language.sampling", "qualname": "generate_languages", "kind": "function", "doc": "Generate languages by randomly sampling vocabularies as bags of expressions.
\n\nA predicate (binary-valued property) of expressions may be supplied, which can be used to adjust the composition of vocabularies (e.g., by the percent of expressions satisfying the predicate).
\n\nIf sample size <= nCr, then take a random sample_size set of combinations. Otherwise, to prevent repeat languages, treat nCr as the sample size.
\n\nArguments: \n\n\nexpressions: a list of the possible expressions to sample from. \nlang_size: the maximum (or exact) number of expressions in each language. \nsample_size: the number of languages to generate. \ncriterion: the predicate, (e.g. semantic universal) by which to split the expressions into those satisfying and those not, and then sample languages with degrees of naturalness based on the percentage from those satisfying. Must apply at the expression level. By default is a trivial criterion, so that all expressions are 'quasi-natural'. \nfixed_wordcount: whether to vary the language size from 1 to lang_size. \nverbose: How detailed the progress of sampling should be, printed to stdout. \ndummy_name: the default name to give to each sampled language, e.g. sampled_lang_42
. These should not collide with any actual natural language names if the efficient communication experiment does use natural language data. \nid_start: an integer representing the number of languages already generated in an experiment. Languages sampled will be named according to this number. For example, if id_start is 0, the first language sampled will be named sampled_lang_0
. Note that the largest id does not necessarily track the actual size of languages saved for the experiment, but it does track how many languages have been generated. \nexact_sample: a boolean representing whether to sample until the exact sample size is filled. If True, the resulting pool of languages may not be unique. \nverbose: a boolean representing how verbose output should be during sampling. \n \n\nReturns: \n\n\n a dict representing the generated pool of languages and the updated id_start, of the form
\n\n{\n \"languages\": (list of updated languages)\n \"id_start\": (updated length of languages)\n}\n
\n \n\nExamples: \n\n\n \n
>>> # Turn the knob on a universal property for modals \n>>> expressions = load_expressions ( expressions_file ) \n>>> universal_property = iff \n>>> result = generate_languages ( \n... ModalLanguage , \n... expressions , \n... lang_size , \n... sample_size , \n... universal_property , \n...) \n>>> languages = result [ "languages" ] \n>>> id_start = result [ "id_start" ] \n
\n
\n \n", "signature": "(\tlanguage_class : Type [ ultk . language . language . Language ] , \texpressions : list [ ultk . language . language . Expression ] , \tlang_size : int , \tsample_size : int , \tcriterion : Callable [[ ultk . language . language . Expression ], bool ] = < function < lambda >> , \tfixed_wordcount = False , \tdummy_name = 'sampled_lang_' , \tid_start : int = 0 , \texact_sample = False , \tverbose = False ) -> dict [ str , typing . Any ] : ", "funcdef": "def"}, "ultk.language.sampling.sample_lang_size": {"fullname": "ultk.language.sampling.sample_lang_size", "modulename": "ultk.language.sampling", "qualname": "sample_lang_size", "kind": "function", "doc": "Get a sample of languages each of exactly lang_size.
\n\nArguments: \n\n\nlanguage_class: a subclass of ultk.Language \nexpressions: a list of Expressions to sample from \nlang_size: int representing the maximum language size to sample \nsample_size: int representing the number of total languages to return \nid_start: an int representing the number of languages already generated in an experiment. \n \n\nReturns: \n\n\n a dict containing the randomly sampled languages and the updated id_start, of the form
\n\n{\n \"languages\": (list of updated languages)\n \"id_start\": (updated length of languages)\n}\n
\n \n", "signature": "(\tlanguage_class : Type [ ultk . language . language . Language ] , \texpressions : list [ ultk . language . language . Expression ] , \tlang_size : int , \tsample_size : int , \tid_start : int = 0 , \tverbose = False , \tdummy_name = 'sampled_lang_id' ) -> list [ ultk . language . language . Language ] : ", "funcdef": "def"}, "ultk.language.sampling.sample_quasi_natural": {"fullname": "ultk.language.sampling.sample_quasi_natural", "modulename": "ultk.language.sampling", "qualname": "sample_quasi_natural", "kind": "function", "doc": "Turn the knob on degree quasi-naturalness for a sample of languages, either by enumerating or randomly sampling unique subsets of all possible combinations.
\n\nArguments: \n\n\nnatural_terms: expressions satisfying some criteria of quasi-naturalness, e.g, a semantic universal. \nunnatural_terms: expressions not satisfying the criteria. \nlang_size: the exact number of expressions a language must have. \nsample_size: how many languages to sample. \n \n\nReturns: \n\n\n a dict containing the randomly sampled quasi-natural languages and the updated id_start, of the form
\n\n{\n \"languages\": (list of updated languages)\n \"id_start\": (updated length of languages)\n}\n
\n \n", "signature": "(\tlanguage_class : Type [ ultk . language . language . Language ] , \tnatural_terms : list [ ultk . language . language . Expression ] , \tunnatural_terms : list [ ultk . language . language . Expression ] , \tlang_size : int , \tsample_size : int , \tid_start : int , \tdummy_name = 'sampled_lang_id' , \tverbose = False ) -> dict [ str , typing . Any ] : ", "funcdef": "def"}, "ultk.language.sampling.rename_id": {"fullname": "ultk.language.sampling.rename_id", "modulename": "ultk.language.sampling", "qualname": "rename_id", "kind": "function", "doc": "Updates a string of form sampled_lang_X
with a new id for X.
\n", "signature": "(name : str , id : int ) -> str : ", "funcdef": "def"}, "ultk.language.sampling.enumerate_all_languages": {"fullname": "ultk.language.sampling.enumerate_all_languages", "modulename": "ultk.language.sampling", "qualname": "enumerate_all_languages", "kind": "function", "doc": "When the sample size requested is greater than the size of all possible languages, just enumerate all the possible languages.
\n\nArguments: \n\n\nlanguage_class: the kind of Language to construct \nid_start: a number to start counting from for assigning names with numerical ids to languages. \nnatural_indices: the indices of quasi-natural languages already seen \nnum_natural: the number of quasi-natural languages to sample \nnatural_terms: the list of quasi-natural terms to sample from \nunnatural_indices: the indices of non-quasi-natural languages already seen \nnum_unnatural: the number of non-quasi-natural languages to sample; 0 by default \nunnatural_terms: the list of non-quasi-natural terms to sample from; empty by default. \ndummy_name: the format of the string to name each language constructed. \n \n\nReturns: \n\n\n a dict containing a set of languages and the updated id_start, of the form
\n\n{\n \"languages\": (list of updated languages)\n \"id_start\": (updated length of languages)\n}\n
\n \n", "signature": "(\tlanguage_class : Type [ ultk . language . language . Language ] , \tid_start : int , \tnatural_terms : list [ ultk . language . language . Expression ] , \tnatural_indices : list [ int ] , \tnum_natural : int = 0 , \tunnatural_terms : list [ ultk . language . language . Expression ] = [] , \tunnatural_indices : list [ int ] = [] , \tnum_unnatural : int = 0 , \tdummy_name = 'sampled_lang_id' , \tverbose = False ) -> dict [ str , typing . Any ] : ", "funcdef": "def"}, "ultk.language.sampling.random_combination_vocabulary": {"fullname": "ultk.language.sampling.random_combination_vocabulary", "modulename": "ultk.language.sampling", "qualname": "random_combination_vocabulary", "kind": "function", "doc": "Get a single vocabulary for a specific language size by choosing a random combination of natural and unnatural terms.
\n\nArguments: \n\n\nseen: the list of language indices already seen \nnum_natural: int \nnatural_terms: list[Expression] \nnum_unnatural: int=0 \nunnatural_terms: list[Expression]=[] \n \n\nReturns: \n\n\n languages: the extended list of input languages.
\n \n", "signature": "(\tseen : set , \tnum_natural : int , \tnatural_terms : list [ ultk . language . language . Expression ] , \tnum_unnatural : int = 0 , \tunnatural_terms : list [ ultk . language . language . Expression ] = [] ) -> list [ ultk . language . language . Language ] : ", "funcdef": "def"}, "ultk.language.semantics": {"fullname": "ultk.language.semantics", "modulename": "ultk.language.semantics", "kind": "module", "doc": "Classes for modeling the meanings of a language.
\n\nMeanings are modeled as things which map linguistic forms to objects of reference. The linguistic forms and objects of reference can in principle be very detailed, and future work may elaborate the meaning classes and implement a Form class.
\n\nIn efficient communication analyses, simplicity and informativeness can be measured as properties of semantic aspects of a language. E.g., a meaning is simple if it is easy to represent, or to compress into some code; a meaning is informative if it is easy for a listener to recover a speaker's intended literal meaning.
\n\nExamples: \n\n\n \n
>>> from ultk.language.semantics import Referent , Meaning , Universe \n>>> from ultk.language.language import Expression \n>>> # construct the meaning space for numerals \n>>> numerals_universe = NumeralUniverse ( referents = [ NumeralReferent ( str ( i )) for i in range ( 1 , 100 )]) \n>>> # construct a list of referents for the expression 'a few' \n>>> a_few_refs = [ NumeralReferent ( name = str ( i )) for i in range ( 2 , 6 )] \n>>> a_few_meaning = NumeralMeaning ( referents = a_few_refs , universe = numerals_universe ) \n>>> # define the expression \n>>> a_few = NumeralExpression ( form = "a few" , meaning = a_few_meaning ) \n
\n
\n \n"}, "ultk.language.semantics.Referent": {"fullname": "ultk.language.semantics.Referent", "modulename": "ultk.language.semantics", "qualname": "Referent", "kind": "class", "doc": "A referent is some object in the universe for a language.
\n"}, "ultk.language.semantics.Referent.__init__": {"fullname": "ultk.language.semantics.Referent.__init__", "modulename": "ultk.language.semantics", "qualname": "Referent.__init__", "kind": "function", "doc": "Initialize a referent.
\n\nArguments: \n\n\nname: a string representing the name of the referent \n \n", "signature": "(name : str , properties : dict = {} , ** kwargs ) "}, "ultk.language.semantics.Referent.name": {"fullname": "ultk.language.semantics.Referent.name", "modulename": "ultk.language.semantics", "qualname": "Referent.name", "kind": "variable", "doc": "
\n"}, "ultk.language.semantics.Referent.to_dict": {"fullname": "ultk.language.semantics.Referent.to_dict", "modulename": "ultk.language.semantics", "qualname": "Referent.to_dict", "kind": "function", "doc": "
\n", "signature": "(self ) -> dict : ", "funcdef": "def"}, "ultk.language.semantics.Universe": {"fullname": "ultk.language.semantics.Universe", "modulename": "ultk.language.semantics", "qualname": "Universe", "kind": "class", "doc": "The universe is the set of possible referent objects for a meaning.
\n"}, "ultk.language.semantics.Universe.__init__": {"fullname": "ultk.language.semantics.Universe.__init__", "modulename": "ultk.language.semantics", "qualname": "Universe.__init__", "kind": "function", "doc": "
\n", "signature": "(\treferents : Iterable [ ultk . language . semantics . Referent ] , \tprior : dict [ str , float ] = None ) "}, "ultk.language.semantics.Universe.referents": {"fullname": "ultk.language.semantics.Universe.referents", "modulename": "ultk.language.semantics", "qualname": "Universe.referents", "kind": "variable", "doc": "
\n"}, "ultk.language.semantics.Universe.set_prior": {"fullname": "ultk.language.semantics.Universe.set_prior", "modulename": "ultk.language.semantics", "qualname": "Universe.set_prior", "kind": "function", "doc": "
\n", "signature": "(self , prior : dict [ str , float ] ): ", "funcdef": "def"}, "ultk.language.semantics.Universe.prior_numpy": {"fullname": "ultk.language.semantics.Universe.prior_numpy", "modulename": "ultk.language.semantics", "qualname": "Universe.prior_numpy", "kind": "function", "doc": "
\n", "signature": "(self ) -> numpy . ndarray : ", "funcdef": "def"}, "ultk.language.semantics.Universe.from_dataframe": {"fullname": "ultk.language.semantics.Universe.from_dataframe", "modulename": "ultk.language.semantics", "qualname": "Universe.from_dataframe", "kind": "function", "doc": "Build a Universe from a DataFrame.\nIt's assumed that each row specifies one Referent, and each column will be a property\nof that Referent. We assume that name
is one of the columns of the DataFrame.
\n\nArguments: \n\n\na DataFrame representing the meaning space of interest, assumed to have a column name
\n \n", "signature": "(cls , df : pandas . core . frame . DataFrame ): ", "funcdef": "def"}, "ultk.language.semantics.Universe.from_csv": {"fullname": "ultk.language.semantics.Universe.from_csv", "modulename": "ultk.language.semantics", "qualname": "Universe.from_csv", "kind": "function", "doc": "Build a Universe from a CSV file. This is a small wrapper around\nUniverse.from_dataframe
, so see that documentation for more information.
\n", "signature": "(cls , filename : str ): ", "funcdef": "def"}, "ultk.language.semantics.Meaning": {"fullname": "ultk.language.semantics.Meaning", "modulename": "ultk.language.semantics", "qualname": "Meaning", "kind": "class", "doc": "A meaning picks out a set of objects from the universe.
\n\nOn one tradition (from formal semantics), we might model an underspecified meaning as a subset of the universe.\nSometimes these different referents are not equally likely,\nin which it can be helpful to define a meaning explicitly as a distribution over the universe.
\n"}, "ultk.language.semantics.Meaning.__init__": {"fullname": "ultk.language.semantics.Meaning.__init__", "modulename": "ultk.language.semantics", "qualname": "Meaning.__init__", "kind": "function", "doc": "A meaning is the set of things it refers to.
\n\nThe objects of reference are a subset of the universe of discourse. Sometimes it is natural to construe the meaning as as a probability distribution over the universe, instead of just a binary predicate.
\n\nArguments: \n\n\nreferents: a list of Referent objects, which must be a subset of the referents in universe
. \nuniverse: a Universe object that defines the probability space for a meaning. \ndist: a dict of with Referent names as keys and weights or probabilities as values, representing the distribution over referents to associate with the meaning. By default is None, and the distribution will be uniform over the passed referents, and any remaining referents are assigned 0 probability. \n \n", "signature": "(\treferents : Iterable [ ultk . language . semantics . Referent ] , \tuniverse : ultk . language . semantics . Universe , \tdist : dict [ str , float ] = None ) "}, "ultk.language.semantics.Meaning.referents": {"fullname": "ultk.language.semantics.Meaning.referents", "modulename": "ultk.language.semantics", "qualname": "Meaning.referents", "kind": "variable", "doc": "
\n"}, "ultk.language.semantics.Meaning.universe": {"fullname": "ultk.language.semantics.Meaning.universe", "modulename": "ultk.language.semantics", "qualname": "Meaning.universe", "kind": "variable", "doc": "
\n"}, "ultk.language.semantics.Meaning.to_dict": {"fullname": "ultk.language.semantics.Meaning.to_dict", "modulename": "ultk.language.semantics", "qualname": "Meaning.to_dict", "kind": "function", "doc": "
\n", "signature": "(self ) -> dict : ", "funcdef": "def"}}, "docInfo": {"ultk": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 771}, "ultk.effcomm": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 361}, "ultk.effcomm.agent": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 30}, "ultk.effcomm.agent.CommunicativeAgent": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 80}, "ultk.effcomm.agent.CommunicativeAgent.language": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.agent.CommunicativeAgent.shape": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.agent.CommunicativeAgent.weights": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 19}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 87}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 62}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 80}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 95, "bases": 0, "doc": 163}, "ultk.effcomm.agent.Speaker": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 3}, "ultk.effcomm.agent.Speaker.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 80}, "ultk.effcomm.agent.Speaker.S": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.agent.Speaker.normalized_weights": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 27}, "ultk.effcomm.agent.Listener": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 3}, "ultk.effcomm.agent.Listener.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 80}, "ultk.effcomm.agent.Listener.R": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.agent.Listener.normalized_weights": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 30}, "ultk.effcomm.agent.LiteralSpeaker": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 70}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 80}, "ultk.effcomm.agent.LiteralSpeaker.S": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.agent.LiteralListener": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 61}, "ultk.effcomm.agent.LiteralListener.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 80}, "ultk.effcomm.agent.LiteralListener.R": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.agent.PragmaticSpeaker": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 43}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 158}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.agent.PragmaticListener": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 45}, "ultk.effcomm.agent.PragmaticListener.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 80, "bases": 0, "doc": 122}, "ultk.effcomm.agent.PragmaticListener.R": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.agent.BayesianListener": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 108}, "ultk.effcomm.agent.BayesianListener.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 64, "bases": 0, "doc": 80}, "ultk.effcomm.analysis": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 15}, "ultk.effcomm.analysis.get_dataframe": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 145, "bases": 0, "doc": 153}, "ultk.effcomm.analysis.pearson_analysis": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 153}, "ultk.effcomm.analysis.trade_off_means": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 294}, "ultk.effcomm.analysis.trade_off_ttest": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 74, "bases": 0, "doc": 257}, "ultk.effcomm.information": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 15}, "ultk.effcomm.information.information_rate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 16}, "ultk.effcomm.information.get_rd_curve": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 75, "bases": 0, "doc": 16}, "ultk.effcomm.information.expected_distortion": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 17}, "ultk.effcomm.information.compute_rate_distortion": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 148}, "ultk.effcomm.information.blahut_arimoto": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 117, "bases": 0, "doc": 260}, "ultk.effcomm.information.get_ib_curve": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 122, "bases": 0, "doc": 225}, "ultk.effcomm.information.get_bottleneck": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 98, "bases": 0, "doc": 282}, "ultk.effcomm.information.ib_complexity": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 12}, "ultk.effcomm.information.ib_informativity": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 80}, "ultk.effcomm.information.ib_comm_cost": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 93}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 92}, "ultk.effcomm.information.ib_accuracy": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 107}, "ultk.effcomm.information.ib_distortion": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 115}, "ultk.effcomm.information.ib_encoder_to_point": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 87, "bases": 0, "doc": 108}, "ultk.effcomm.information.ib_optimal_decoder": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 89}, "ultk.effcomm.informativity": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 13}, "ultk.effcomm.informativity.indicator_utility": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 16}, "ultk.effcomm.informativity.informativity": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 152, "bases": 0, "doc": 306}, "ultk.effcomm.informativity.communicative_success": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 136, "bases": 0, "doc": 161}, "ultk.effcomm.optimization": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 22}, "ultk.effcomm.optimization.Mutation": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.optimization.Mutation.precondition": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 13}, "ultk.effcomm.optimization.Mutation.mutate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 90, "bases": 0, "doc": 12}, "ultk.effcomm.optimization.RemoveExpression": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 3}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 13}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 90, "bases": 0, "doc": 12}, "ultk.effcomm.optimization.AddExpression": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 3}, "ultk.effcomm.optimization.AddExpression.precondition": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 13}, "ultk.effcomm.optimization.AddExpression.mutate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 90, "bases": 0, "doc": 12}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 16}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 170, "bases": 0, "doc": 184}, "ultk.effcomm.optimization.EvolutionaryOptimizer.objectives": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.optimization.EvolutionaryOptimizer.expressions": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutations": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.optimization.EvolutionaryOptimizer.generations": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 98, "bases": 0, "doc": 157}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 47}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 73}, "ultk.effcomm.optimization.sample_parents": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 107, "bases": 0, "doc": 117}, "ultk.effcomm.sampling": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "ultk.effcomm.sampling.get_hypothetical_variants": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 164}, "ultk.effcomm.tradeoff": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 26}, "ultk.effcomm.tradeoff.dominates": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 60}, "ultk.effcomm.tradeoff.non_dominated_2d": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 72}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 132, "bases": 0, "doc": 12}, "ultk.effcomm.tradeoff.pareto_min_distances": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 131}, "ultk.effcomm.tradeoff.interpolate_data": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 86, "bases": 0, "doc": 169}, "ultk.effcomm.tradeoff.tradeoff": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 199, "bases": 0, "doc": 219}, "ultk.effcomm.util": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 11}, "ultk.effcomm.util.rows_zero_to_uniform": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 96}, "ultk.effcomm.util.build_utility_matrix": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 99, "bases": 0, "doc": 21}, "ultk.effcomm.util.PRECISION": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "ultk.effcomm.util.marginal": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 52}, "ultk.effcomm.util.conditional": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 56}, "ultk.effcomm.util.joint": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 17, "bases": 0, "doc": 69}, "ultk.effcomm.util.marginalize": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 17, "bases": 0, "doc": 68}, "ultk.effcomm.util.bayes": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 17, "bases": 0, "doc": 37}, "ultk.effcomm.util.xlogx": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "ultk.effcomm.util.H": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 16}, "ultk.effcomm.util.MI": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 6}, "ultk.effcomm.util.DKL": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 7}, "ultk.effcomm.util.gNID": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 66}, "ultk.language": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 105}, "ultk.language.grammar": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.Rule": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 135}, "ultk.language.grammar.Rule.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 108, "bases": 0, "doc": 3}, "ultk.language.grammar.Rule.lhs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.Rule.rhs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.Rule.func": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.Rule.name": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.Rule.weight": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.Rule.is_terminal": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 27}, "ultk.language.grammar.GrammaticalExpression": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 90}, "ultk.language.grammar.GrammaticalExpression.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 107, "bases": 0, "doc": 3}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.GrammaticalExpression.func": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.GrammaticalExpression.children": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 51}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "ultk.language.grammar.GrammaticalExpression.add_child": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "ultk.language.grammar.UniquenessArgs": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 95}, "ultk.language.grammar.UniquenessArgs.unique_expressions": {"qualname": 3, "fullname": 6, "annotation": 9, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.UniquenessArgs.key": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.UniquenessArgs.compare_func": {"qualname": 3, "fullname": 6, "annotation": 10, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.grammar.Grammar": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 18}, "ultk.language.grammar.Grammar.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "ultk.language.grammar.Grammar.add_rule": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 3}, "ultk.language.grammar.Grammar.parse": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 104, "bases": 0, "doc": 99}, "ultk.language.grammar.Grammar.generate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 10}, "ultk.language.grammar.Grammar.enumerate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 124, "bases": 0, "doc": 165}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 134, "bases": 0, "doc": 12}, "ultk.language.grammar.Grammar.get_unique_expressions": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 194, "bases": 0, "doc": 197}, "ultk.language.grammar.Grammar.get_all_rules": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 9}, "ultk.language.grammar.Grammar.from_yaml": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 97}, "ultk.language.language": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 234}, "ultk.language.language.Expression": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 10}, "ultk.language.language.Expression.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "ultk.language.language.Expression.form": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.language.Expression.meaning": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.language.Expression.can_express": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 18}, "ultk.language.language.Expression.to_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "ultk.language.language.Language": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 7}, "ultk.language.language.Language.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "ultk.language.language.Language.expressions": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.language.Language.universe": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.language.Language.add_expression": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 14}, "ultk.language.language.Language.pop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 18}, "ultk.language.language.Language.is_natural": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 11}, "ultk.language.language.Language.degree_property": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 53, "bases": 0, "doc": 15}, "ultk.language.language.Language.binary_matrix": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 24}, "ultk.language.language.Language.to_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "ultk.language.language.aggregate_expression_complexity": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 128, "bases": 0, "doc": 81}, "ultk.language.sampling": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.sampling.powerset": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 108}, "ultk.language.sampling.all_meanings": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 13}, "ultk.language.sampling.all_expressions": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 74, "bases": 0, "doc": 10}, "ultk.language.sampling.all_languages": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 82}, "ultk.language.sampling.upto_comb": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 33}, "ultk.language.sampling.random_languages": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 141, "bases": 0, "doc": 457}, "ultk.language.sampling.generate_languages": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 247, "bases": 0, "doc": 639}, "ultk.language.sampling.sample_lang_size": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 167, "bases": 0, "doc": 135}, "ultk.language.sampling.sample_quasi_natural": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 190, "bases": 0, "doc": 139}, "ultk.language.sampling.rename_id": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 19}, "ultk.language.sampling.enumerate_all_languages": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 254, "bases": 0, "doc": 220}, "ultk.language.sampling.random_combination_vocabulary": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 145, "bases": 0, "doc": 88}, "ultk.language.semantics": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 456}, "ultk.language.semantics.Referent": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 14}, "ultk.language.semantics.Referent.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 26}, "ultk.language.semantics.Referent.name": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.semantics.Referent.to_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "ultk.language.semantics.Universe": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 15}, "ultk.language.semantics.Universe.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 66, "bases": 0, "doc": 3}, "ultk.language.semantics.Universe.referents": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.semantics.Universe.set_prior": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 3}, "ultk.language.semantics.Universe.prior_numpy": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "ultk.language.semantics.Universe.from_dataframe": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 67}, "ultk.language.semantics.Universe.from_csv": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 28}, "ultk.language.semantics.Meaning": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 60}, "ultk.language.semantics.Meaning.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 92, "bases": 0, "doc": 149}, "ultk.language.semantics.Meaning.referents": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.semantics.Meaning.universe": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ultk.language.semantics.Meaning.to_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}}, "length": 193, "save": true}, "index": {"qualname": {"root": {"2": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}}, "df": 1}}, "docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.__init__": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 17, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.information.ib_comm_cost": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.language": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.shape": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"ultk.language.sampling.upto_comb": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.ib_comm_cost": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.util.conditional": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.GrammaticalExpression.children": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.language.Expression.can_express": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.__init__": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 17, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information.information_rate": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 2}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 9}, "s": {"docs": {"ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1}}, "df": 2}, "d": {"docs": {"ultk.language.sampling.rename_id": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.language": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.language.language.Language": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1}, "ultk.language.language.Language.expressions": {"tf": 1}, "ultk.language.language.Language.universe": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}, "ultk.language.language.Language.to_dict": {"tf": 1}}, "df": 13, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 7}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.Listener": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.R": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.S": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.R": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Rule.lhs": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"ultk.effcomm.agent.Speaker.S": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"tf": 1}}, "df": 3, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.shape": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 6}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.Speaker": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.S": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.semantics.Universe.set_prior": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.Rule.weight": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}}, "df": 5}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}}, "df": 3}}}}}}}}, "n": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule.name": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"tf": 1}, "ultk.language.semantics.Referent.name": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.language.Language.is_natural": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.semantics.Universe.prior_numpy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"ultk.effcomm.agent.Listener.R": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.R": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.R": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Referent.name": {"tf": 1}, "ultk.language.semantics.Referent.to_dict": {"tf": 1}}, "df": 6, "s": {"docs": {"ultk.language.semantics.Universe.referents": {"tf": 1}, "ultk.language.semantics.Meaning.referents": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.RemoveExpression": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.rename_id": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"ultk.effcomm.information.get_rd_curve": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.Rule.lhs": {"tf": 1}, "ultk.language.grammar.Rule.rhs": {"tf": 1}, "ultk.language.grammar.Rule.func": {"tf": 1}, "ultk.language.grammar.Rule.name": {"tf": 1}, "ultk.language.grammar.Rule.weight": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"tf": 1}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1}}, "df": 10, "s": {"docs": {"ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Rule.rhs": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1}, "ultk.language.language.Expression.to_dict": {"tf": 1}, "ultk.language.language.Language.to_dict": {"tf": 1}, "ultk.language.semantics.Referent.to_dict": {"tf": 1}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1}}, "df": 14}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.grammar.Rule.is_terminal": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.language.Expression.can_express": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.language.language.Expression": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1}, "ultk.language.language.Expression.form": {"tf": 1}, "ultk.language.language.Expression.meaning": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.language.Expression.to_dict": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 10, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Language.expressions": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}}, "df": 5}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.information.expected_distortion": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 3}}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.objectives": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.expressions": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.generations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.R": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.util.PRECISION": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.language.Language.degree_property": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.semantics.Universe.set_prior": {"tf": 1}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"ultk.language.language.Language.pop": {"tf": 1}}, "df": 1}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.util.bayes": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.language.Language.binary_matrix": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.generations": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.util.gNID": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.func": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.children": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}, "r": {"docs": {"ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.grammar.Grammar.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 10}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1}, "ultk.language.language.Expression.to_dict": {"tf": 1}, "ultk.language.language.Language.to_dict": {"tf": 1}, "ultk.language.semantics.Referent.to_dict": {"tf": 1}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.Language.degree_property": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1}}, "df": 1}, "d": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.util.DKL": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.ib_accuracy": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.AddExpression": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "t": {"docs": {"ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 5}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.objectives": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.language.Expression.meaning": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.referents": {"tf": 1}, "ultk.language.semantics.Meaning.universe": {"tf": 1}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1}}, "df": 6, "s": {"docs": {"ultk.language.sampling.all_meanings": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.Mutation": {"tf": 1}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}}, "df": 3, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {"ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 4, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.util.marginal": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.util.marginalize": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {"ultk.effcomm.util.MI": {"tf": 1}}, "df": 1, "n": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.key": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}}, "df": 4}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.Language.universe": {"tf": 1}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Universe.referents": {"tf": 1}, "ultk.language.semantics.Universe.set_prior": {"tf": 1}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}, "ultk.language.semantics.Meaning.universe": {"tf": 1}}, "df": 9}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk.language.sampling.upto_comb": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"ultk.language.grammar.Rule.func": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.func": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"ultk.language.language.Expression.form": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {"ultk.effcomm.util.H": {"tf": 1}}, "df": 1, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 1}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.util.joint": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.util.xlogx": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.grammar.UniquenessArgs.key": {"tf": 1}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 1}}}}}}}, "fullname": {"root": {"2": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}}, "df": 1}}, "docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.__init__": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 17, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "k": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.language": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.shape": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.S": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.R": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.R": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.R": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.Mutation": {"tf": 1}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.objectives": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.expressions": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.generations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.sampling": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.effcomm.util.PRECISION": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.bayes": {"tf": 1}, "ultk.effcomm.util.xlogx": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}, "ultk.effcomm.util.MI": {"tf": 1}, "ultk.effcomm.util.DKL": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.Rule.lhs": {"tf": 1}, "ultk.language.grammar.Rule.rhs": {"tf": 1}, "ultk.language.grammar.Rule.func": {"tf": 1}, "ultk.language.grammar.Rule.name": {"tf": 1}, "ultk.language.grammar.Rule.weight": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.func": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.children": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.key": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.grammar.Grammar.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.language.Expression": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1}, "ultk.language.language.Expression.form": {"tf": 1}, "ultk.language.language.Expression.meaning": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.language.Expression.to_dict": {"tf": 1}, "ultk.language.language.Language": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1}, "ultk.language.language.Language.expressions": {"tf": 1}, "ultk.language.language.Language.universe": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}, "ultk.language.language.Language.to_dict": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}, "ultk.language.sampling": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Referent.name": {"tf": 1}, "ultk.language.semantics.Referent.to_dict": {"tf": 1}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Universe.referents": {"tf": 1}, "ultk.language.semantics.Universe.set_prior": {"tf": 1}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.referents": {"tf": 1}, "ultk.language.semantics.Meaning.universe": {"tf": 1}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1}}, "df": 193}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.util": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.effcomm.util.PRECISION": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.bayes": {"tf": 1}, "ultk.effcomm.util.xlogx": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}, "ultk.effcomm.util.MI": {"tf": 1}, "ultk.effcomm.util.DKL": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}}, "df": 14, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.key": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}}, "df": 4}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.Language.universe": {"tf": 1}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Universe.referents": {"tf": 1}, "ultk.language.semantics.Universe.set_prior": {"tf": 1}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}, "ultk.language.semantics.Meaning.universe": {"tf": 1}}, "df": 9}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk.language.sampling.upto_comb": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.language": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.shape": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.S": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.R": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.R": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.R": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.Mutation": {"tf": 1}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.objectives": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.expressions": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.generations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.sampling": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.effcomm.util.PRECISION": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.bayes": {"tf": 1}, "ultk.effcomm.util.xlogx": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}, "ultk.effcomm.util.MI": {"tf": 1}, "ultk.effcomm.util.DKL": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}}, "df": 111}}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.language.Expression.can_express": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.language.language.Expression": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1}, "ultk.language.language.Expression.form": {"tf": 1}, "ultk.language.language.Expression.meaning": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.language.Expression.to_dict": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 10, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Language.expressions": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}}, "df": 5}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.information.expected_distortion": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 3}}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.objectives": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.expressions": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.generations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.language": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.shape": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.S": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.R": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.R": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.R": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}}, "df": 37}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 5}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.ib_accuracy": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.AddExpression": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "t": {"docs": {"ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 5}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.information.ib_comm_cost": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.language": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.shape": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"ultk.language.sampling.upto_comb": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.ib_comm_cost": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.util.conditional": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.GrammaticalExpression.children": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.language.Expression.can_express": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.__init__": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 17, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.information.information_rate": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 16}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 5}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 9}, "s": {"docs": {"ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1}}, "df": 2}, "d": {"docs": {"ultk.language.sampling.rename_id": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.language": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.Rule.lhs": {"tf": 1}, "ultk.language.grammar.Rule.rhs": {"tf": 1}, "ultk.language.grammar.Rule.func": {"tf": 1}, "ultk.language.grammar.Rule.name": {"tf": 1}, "ultk.language.grammar.Rule.weight": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.func": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.children": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.key": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.grammar.Grammar.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.language": {"tf": 1.4142135623730951}, "ultk.language.language.Expression": {"tf": 1.4142135623730951}, "ultk.language.language.Expression.__init__": {"tf": 1.4142135623730951}, "ultk.language.language.Expression.form": {"tf": 1.4142135623730951}, "ultk.language.language.Expression.meaning": {"tf": 1.4142135623730951}, "ultk.language.language.Expression.can_express": {"tf": 1.4142135623730951}, "ultk.language.language.Expression.to_dict": {"tf": 1.4142135623730951}, "ultk.language.language.Language": {"tf": 1.7320508075688772}, "ultk.language.language.Language.__init__": {"tf": 1.7320508075688772}, "ultk.language.language.Language.expressions": {"tf": 1.7320508075688772}, "ultk.language.language.Language.universe": {"tf": 1.7320508075688772}, "ultk.language.language.Language.add_expression": {"tf": 1.7320508075688772}, "ultk.language.language.Language.pop": {"tf": 1.7320508075688772}, "ultk.language.language.Language.is_natural": {"tf": 1.7320508075688772}, "ultk.language.language.Language.degree_property": {"tf": 1.7320508075688772}, "ultk.language.language.Language.binary_matrix": {"tf": 1.7320508075688772}, "ultk.language.language.Language.to_dict": {"tf": 1.7320508075688772}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1.4142135623730951}, "ultk.language.sampling": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Referent.name": {"tf": 1}, "ultk.language.semantics.Referent.to_dict": {"tf": 1}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Universe.referents": {"tf": 1}, "ultk.language.semantics.Universe.set_prior": {"tf": 1}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.referents": {"tf": 1}, "ultk.language.semantics.Meaning.universe": {"tf": 1}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1}}, "df": 84, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 7}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.Listener": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.R": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.S": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.R": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Rule.lhs": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"ultk.effcomm.agent.Speaker.S": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"tf": 1}}, "df": 3, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.shape": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.sampling": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language.sampling": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 15}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.Speaker": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.S": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Referent.name": {"tf": 1}, "ultk.language.semantics.Referent.to_dict": {"tf": 1}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Universe.referents": {"tf": 1}, "ultk.language.semantics.Universe.set_prior": {"tf": 1}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.referents": {"tf": 1}, "ultk.language.semantics.Meaning.universe": {"tf": 1}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1}}, "df": 17}}}}}}}, "t": {"docs": {"ultk.language.semantics.Universe.set_prior": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.Rule.weight": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}}, "df": 5}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}}, "df": 3}}}}}}}}, "n": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule.name": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"tf": 1}, "ultk.language.semantics.Referent.name": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.language.Language.is_natural": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.semantics.Universe.prior_numpy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"ultk.effcomm.agent.Listener.R": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.R": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.R": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Referent.name": {"tf": 1}, "ultk.language.semantics.Referent.to_dict": {"tf": 1}}, "df": 6, "s": {"docs": {"ultk.language.semantics.Universe.referents": {"tf": 1}, "ultk.language.semantics.Meaning.referents": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.RemoveExpression": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.rename_id": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"ultk.effcomm.information.get_rd_curve": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.Rule.lhs": {"tf": 1}, "ultk.language.grammar.Rule.rhs": {"tf": 1}, "ultk.language.grammar.Rule.func": {"tf": 1}, "ultk.language.grammar.Rule.name": {"tf": 1}, "ultk.language.grammar.Rule.weight": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"tf": 1}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1}}, "df": 10, "s": {"docs": {"ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Rule.rhs": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1}, "ultk.language.language.Expression.to_dict": {"tf": 1}, "ultk.language.language.Language.to_dict": {"tf": 1}, "ultk.language.semantics.Referent.to_dict": {"tf": 1}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1}}, "df": 14}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.grammar.Rule.is_terminal": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.R": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.util.PRECISION": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.language.Language.degree_property": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.semantics.Universe.set_prior": {"tf": 1}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"ultk.language.language.Language.pop": {"tf": 1}}, "df": 1}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.util.bayes": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.language.Language.binary_matrix": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.generations": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.util.gNID": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.grammar": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.Rule.lhs": {"tf": 1}, "ultk.language.grammar.Rule.rhs": {"tf": 1}, "ultk.language.grammar.Rule.func": {"tf": 1}, "ultk.language.grammar.Rule.name": {"tf": 1}, "ultk.language.grammar.Rule.weight": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.func": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.children": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.key": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.__init__": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.parse": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.generate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}}, "df": 32}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.func": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.children": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1}, "ultk.language.language.Expression.to_dict": {"tf": 1}, "ultk.language.language.Language.to_dict": {"tf": 1}, "ultk.language.semantics.Referent.to_dict": {"tf": 1}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.Language.degree_property": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1}}, "df": 1}, "d": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.util.DKL": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.Mutation": {"tf": 1}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.objectives": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.expressions": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.generations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 25}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.objectives": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.language.Expression.meaning": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.referents": {"tf": 1}, "ultk.language.semantics.Meaning.universe": {"tf": 1}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1}}, "df": 6, "s": {"docs": {"ultk.language.sampling.all_meanings": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.Mutation": {"tf": 1}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}}, "df": 3, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.mutations": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {"ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 4, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.util.marginal": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.util.marginalize": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {"ultk.effcomm.util.MI": {"tf": 1}}, "df": 1, "n": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"ultk.language.grammar.Rule.func": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.func": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"ultk.language.language.Expression.form": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {"ultk.effcomm.util.H": {"tf": 1}}, "df": 1, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 1}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.util.joint": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.util.xlogx": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.grammar.UniquenessArgs.key": {"tf": 1}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 1}}}}}}}, "annotation": {"root": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.S": {"tf": 1}, "ultk.effcomm.agent.Listener.R": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.R": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.R": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.key": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}, "ultk.language.language.Language.expressions": {"tf": 1.4142135623730951}, "ultk.language.language.Language.universe": {"tf": 1}}, "df": 12, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.S": {"tf": 1}, "ultk.effcomm.agent.Listener.R": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.R": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.R": {"tf": 1}}, "df": 7}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.S": {"tf": 1}, "ultk.effcomm.agent.Listener.R": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.R": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.R": {"tf": 1}}, "df": 7}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.grammar.UniquenessArgs.key": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "k": {"docs": {"ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}, "ultk.language.language.Language.universe": {"tf": 1}}, "df": 3}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.Language.universe": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.key": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1.4142135623730951}, "ultk.language.language.Language.expressions": {"tf": 1.4142135623730951}, "ultk.language.language.Language.universe": {"tf": 1}}, "df": 5}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.key": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1.4142135623730951}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.key": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "k": {"docs": {"ultk.language.grammar.UniquenessArgs.key": {"tf": 1}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "k": {"docs": {"ultk.language.language.Language.expressions": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.language.Language.expressions": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.language.Language.universe": {"tf": 1}}, "df": 1}}}}}}}}}}}, "default_value": {"root": {"1": {"6": {"docs": {"ultk.effcomm.util.PRECISION": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.util.PRECISION": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}}, "signature": {"root": {"0": {"5": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}, "docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 10}, "1": {"0": {"0": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}}, "df": 7, "e": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}, "2": {"0": {"0": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 2}, "ultk.effcomm.analysis.get_dataframe": {"tf": 2.449489742783178}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 2}, "ultk.language.grammar.Grammar.parse": {"tf": 2.449489742783178}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_lang_size": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}}, "df": 12}, "docs": {}, "df": 0}, "5": {"0": {"0": {"0": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 1}, "docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 5.477225575051661}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 3.4641016151377544}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 6.324555320336759}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 5.656854249492381}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 5.656854249492381}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 5.656854249492381}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 5.656854249492381}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 6.244997998398398}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 4.47213595499958}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 8.717797887081348}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 5.477225575051661}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 4}, "ultk.effcomm.agent.Listener.__init__": {"tf": 5.477225575051661}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 4}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 5.477225575051661}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 5.477225575051661}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 8.246211251235321}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 8.12403840463596}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 7.280109889280518}, "ultk.effcomm.analysis.get_dataframe": {"tf": 10.770329614269007}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 7.3484692283495345}, "ultk.effcomm.analysis.trade_off_means": {"tf": 7.681145747868608}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 7.681145747868608}, "ultk.effcomm.information.information_rate": {"tf": 5.656854249492381}, "ultk.effcomm.information.get_rd_curve": {"tf": 7.810249675906654}, "ultk.effcomm.information.expected_distortion": {"tf": 6.855654600401044}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 5.385164807134504}, "ultk.effcomm.information.blahut_arimoto": {"tf": 9.643650760992955}, "ultk.effcomm.information.get_ib_curve": {"tf": 9.899494936611665}, "ultk.effcomm.information.get_bottleneck": {"tf": 8.94427190999916}, "ultk.effcomm.information.ib_complexity": {"tf": 6.324555320336759}, "ultk.effcomm.information.ib_informativity": {"tf": 7.416198487095663}, "ultk.effcomm.information.ib_comm_cost": {"tf": 7.416198487095663}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 7.483314773547883}, "ultk.effcomm.information.ib_accuracy": {"tf": 6.855654600401044}, "ultk.effcomm.information.ib_distortion": {"tf": 6.855654600401044}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 8.426149773176359}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 7.14142842854285}, "ultk.effcomm.informativity.indicator_utility": {"tf": 7.0710678118654755}, "ultk.effcomm.informativity.informativity": {"tf": 11}, "ultk.effcomm.informativity.communicative_success": {"tf": 10.535653752852738}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 5.830951894845301}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 8.602325267042627}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 5.830951894845301}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 8.602325267042627}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 5.830951894845301}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 8.602325267042627}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 10.908712114635714}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 8.888194417315589}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 7.483314773547883}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 6.782329983125268}, "ultk.effcomm.optimization.sample_parents": {"tf": 9.273618495495704}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 9.797958971132712}, "ultk.effcomm.tradeoff.dominates": {"tf": 5.830951894845301}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 5.830951894845301}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 10.392304845413264}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 6.164414002968976}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 8.246211251235321}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 12.649110640673518}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 4.898979485566356}, "ultk.effcomm.util.build_utility_matrix": {"tf": 9}, "ultk.effcomm.util.marginal": {"tf": 4.242640687119285}, "ultk.effcomm.util.conditional": {"tf": 3.1622776601683795}, "ultk.effcomm.util.joint": {"tf": 3.7416573867739413}, "ultk.effcomm.util.marginalize": {"tf": 3.7416573867739413}, "ultk.effcomm.util.bayes": {"tf": 3.7416573867739413}, "ultk.effcomm.util.xlogx": {"tf": 3.1622776601683795}, "ultk.effcomm.util.H": {"tf": 4.242640687119285}, "ultk.effcomm.util.MI": {"tf": 3.1622776601683795}, "ultk.effcomm.util.DKL": {"tf": 4.69041575982343}, "ultk.effcomm.util.gNID": {"tf": 4.242640687119285}, "ultk.language.grammar.Rule.__init__": {"tf": 9.273618495495704}, "ultk.language.grammar.Rule.is_terminal": {"tf": 3.4641016151377544}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 9.38083151964686}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 3.4641016151377544}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 6.782329983125268}, "ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 4}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 3.4641016151377544}, "ultk.language.grammar.Grammar.__init__": {"tf": 3.4641016151377544}, "ultk.language.grammar.Grammar.add_rule": {"tf": 5.477225575051661}, "ultk.language.grammar.Grammar.parse": {"tf": 9.219544457292887}, "ultk.language.grammar.Grammar.generate": {"tf": 6.164414002968976}, "ultk.language.grammar.Grammar.enumerate": {"tf": 10.099504938362077}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 10.488088481701515}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 12.529964086141668}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 5.385164807134504}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 4.242640687119285}, "ultk.language.language.Expression.__init__": {"tf": 7.483314773547883}, "ultk.language.language.Expression.can_express": {"tf": 5.656854249492381}, "ultk.language.language.Expression.to_dict": {"tf": 3.4641016151377544}, "ultk.language.language.Language.__init__": {"tf": 6.48074069840786}, "ultk.language.language.Language.add_expression": {"tf": 5.477225575051661}, "ultk.language.language.Language.pop": {"tf": 5.656854249492381}, "ultk.language.language.Language.is_natural": {"tf": 3.4641016151377544}, "ultk.language.language.Language.degree_property": {"tf": 6.6332495807108}, "ultk.language.language.Language.binary_matrix": {"tf": 4}, "ultk.language.language.Language.to_dict": {"tf": 4.242640687119285}, "ultk.language.language.aggregate_expression_complexity": {"tf": 10.099504938362077}, "ultk.language.sampling.powerset": {"tf": 5.477225575051661}, "ultk.language.sampling.all_meanings": {"tf": 7.483314773547883}, "ultk.language.sampling.all_expressions": {"tf": 7.810249675906654}, "ultk.language.sampling.all_languages": {"tf": 8.888194417315589}, "ultk.language.sampling.upto_comb": {"tf": 4.898979485566356}, "ultk.language.sampling.random_languages": {"tf": 10.04987562112089}, "ultk.language.sampling.generate_languages": {"tf": 13.892443989449804}, "ultk.language.sampling.sample_lang_size": {"tf": 11.40175425099138}, "ultk.language.sampling.sample_quasi_natural": {"tf": 12.12435565298214}, "ultk.language.sampling.rename_id": {"tf": 4.898979485566356}, "ultk.language.sampling.enumerate_all_languages": {"tf": 14.177446878757825}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 10.816653826391969}, "ultk.language.semantics.Referent.__init__": {"tf": 5.744562646538029}, "ultk.language.semantics.Referent.to_dict": {"tf": 3.4641016151377544}, "ultk.language.semantics.Universe.__init__": {"tf": 7.416198487095663}, "ultk.language.semantics.Universe.set_prior": {"tf": 5.291502622129181}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 4}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 5.477225575051661}, "ultk.language.semantics.Universe.from_csv": {"tf": 4.242640687119285}, "ultk.language.semantics.Meaning.__init__": {"tf": 8.717797887081348}, "ultk.language.semantics.Meaning.to_dict": {"tf": 3.4641016151377544}}, "df": 119, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_lang_size": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 5, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 2}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 2}, "ultk.effcomm.agent.Listener.__init__": {"tf": 2}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 2}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 2}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 2}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 2}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_complexity": {"tf": 2}, "ultk.effcomm.information.ib_informativity": {"tf": 2}, "ultk.effcomm.information.ib_comm_cost": {"tf": 2}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 2}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 2.449489742783178}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 2}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 3}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 2}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 3}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 2}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 3}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 2.449489742783178}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 2.449489742783178}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 2.6457513110645907}, "ultk.effcomm.optimization.sample_parents": {"tf": 3}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 3}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 3}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1.4142135623730951}, "ultk.language.language.Language.add_expression": {"tf": 1.4142135623730951}, "ultk.language.language.Language.pop": {"tf": 1.4142135623730951}, "ultk.language.language.Language.degree_property": {"tf": 1.4142135623730951}, "ultk.language.language.aggregate_expression_complexity": {"tf": 2.449489742783178}, "ultk.language.sampling.all_meanings": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_expressions": {"tf": 1.7320508075688772}, "ultk.language.sampling.all_languages": {"tf": 3.4641016151377544}, "ultk.language.sampling.random_languages": {"tf": 3.4641016151377544}, "ultk.language.sampling.generate_languages": {"tf": 2.8284271247461903}, "ultk.language.sampling.sample_lang_size": {"tf": 3}, "ultk.language.sampling.sample_quasi_natural": {"tf": 2.8284271247461903}, "ultk.language.sampling.enumerate_all_languages": {"tf": 2.8284271247461903}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 2.6457513110645907}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.4142135623730951}}, "df": 62, "s": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 6}}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.dominates": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 2}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.7320508075688772}}, "df": 25, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}}, "df": 2}}}}, "[": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "k": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.language.grammar.Rule.__init__": {"tf": 1.4142135623730951}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 7}, "h": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 5}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "k": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 2}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 2}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1.7320508075688772}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.7320508075688772}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_meanings": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_expressions": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_lang_size": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.7320508075688772}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.7320508075688772}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.4142135623730951}}, "df": 63}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}}, "df": 2}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.util.build_utility_matrix": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_meanings": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}, "k": {"docs": {"ultk.language.sampling.upto_comb": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1}, "ultk.language.language.Language.to_dict": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}}, "df": 16}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.language.Expression.to_dict": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}, "ultk.language.language.Language.to_dict": {"tf": 1}, "ultk.language.semantics.Referent.to_dict": {"tf": 1}, "ultk.language.semantics.Universe.set_prior": {"tf": 1}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 1}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1}}, "df": 38}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1.4142135623730951}, "ultk.language.language.Expression.__init__": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.4142135623730951}}, "df": 14}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1}, "n": {"docs": {"ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 1}}, "t": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 2}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule.__init__": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 2}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 2}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.rename_id": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Universe.set_prior": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 26, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.Grammar.__init__": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 4, "s": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 5, "s": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.information_rate": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_lang_size": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}}, "df": 8}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}, "ultk.effcomm.util.DKL": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 2.23606797749979}, "ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 2}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 2}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 25, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_meanings": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_expressions": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_languages": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}}, "df": 5, "p": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.information.information_rate": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_rd_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.information.expected_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1.4142135623730951}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_accuracy": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 2}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 2}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1.4142135623730951}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 1}}, "df": 28}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.information.information_rate": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_rd_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.information.expected_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1.4142135623730951}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_accuracy": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 2}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 2}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1.4142135623730951}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 1}}, "df": 28}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}}, "df": 10}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.Rule.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 2}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_lang_size": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.7320508075688772}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 2.23606797749979}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}}, "df": 26}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "f": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "t": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.aggregate_expression_complexity": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1.7320508075688772}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 7}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}}, "df": 5}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}}, "df": 2}}}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"1": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}}, "df": 1}, "2": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1.4142135623730951}, "ultk.language.language.Expression.can_express": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 9, "s": {"docs": {"ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Rule.__init__": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {"ultk.language.language.Language.add_expression": {"tf": 1}}, "df": 1, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}}, "df": 20, "s": {"docs": {"ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 9}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 2, "d": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 6}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 5}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Expression.to_dict": {"tf": 1}, "ultk.language.language.Language.to_dict": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Referent.to_dict": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Universe.set_prior": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1}}, "df": 21}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 5, "s": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 8}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 4}}}}, "f": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 10}}}, "e": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 6, "[": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "k": {"docs": {"ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.language.Language.__init__": {"tf": 1}}, "df": 12}}}}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 15}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 6}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}, "ultk.effcomm.util.DKL": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "c": {"docs": {"ultk.language.grammar.Rule.__init__": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Rule.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 12}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 7}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.7320508075688772}, "ultk.effcomm.information.get_ib_curve": {"tf": 2}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.7320508075688772}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 2}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Universe.set_prior": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 30}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 6}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.grammar.Rule.__init__": {"tf": 1.4142135623730951}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 4}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 2}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}, "p": {"1": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1}}, "df": 1}, "2": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1}}, "df": 1}, "docs": {"ultk.effcomm.information.expected_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.util.xlogx": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}, "ultk.effcomm.util.DKL": {"tf": 1}}, "df": 6, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.language.semantics.Universe.__init__": {"tf": 1}, "ultk.language.semantics.Universe.set_prior": {"tf": 1}}, "df": 17}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.language.language.Language.degree_property": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}}, "df": 4}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 3}}}}}, "x": {"docs": {"ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.bayes": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}}, "df": 4, "y": {"docs": {"ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1}, "ultk.effcomm.util.MI": {"tf": 1}}, "df": 3}}, "y": {"docs": {"ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.bayes": {"tf": 1}}, "df": 3}, "w": {"docs": {"ultk.effcomm.util.gNID": {"tf": 1}}, "df": 1}, "v": {"docs": {"ultk.effcomm.util.gNID": {"tf": 1}}, "df": 1}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 12}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.information.get_rd_curve": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1}, "ultk.language.language.Expression.__init__": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}}, "df": 13, "s": {"docs": {"ultk.language.sampling.all_expressions": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 5}, "x": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 8, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "x": {"2": {"7": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 2}, "ultk.language.sampling.all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ultk.effcomm.information.expected_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.bayes": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1.4142135623730951}}, "df": 8, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.language.grammar.Rule.__init__": {"tf": 1.4142135623730951}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 7}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}}, "df": 5}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.grammar.Grammar.add_rule": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2}}, "df": 5}}}}}}}}}}}}}}}}}}}}}, "y": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 1}, "q": {"docs": {"ultk.effcomm.util.DKL": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 4}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.Speaker": {"tf": 1}, "ultk.effcomm.agent.Listener": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.RemoveExpression": {"tf": 1}, "ultk.effcomm.optimization.AddExpression": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "k": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}}, "df": 1}}}}}}}}}}}, "doc": {"root": {"0": {"1": {"1": {"8": {"1": {"7": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"3": {"0": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"2": {"0": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"1": {"0": {"2": {"7": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"9": {"2": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"4": {"0": {"6": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.trade_off_means": {"tf": 2.449489742783178}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 2}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 2.449489742783178}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 16, "s": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"ultk.language.semantics": {"tf": 1}}, "df": 1}, "1": {"9": {"3": {"7": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "docs": {}, "df": 0}, "9": {"docs": {}, "df": 0, "\u2013": {"1": {"2": {"8": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 2}, "1": {"1": {"1": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "docs": {}, "df": 0}, "2": {"6": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0}, "4": {"6": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0}, "5": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {"ultk": {"tf": 1}}, "df": 1}, "2": {"1": {"8": {"8": {"1": {"1": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"8": {"5": {"5": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"1": {"4": {"2": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "8": {"0": {"0": {"5": {"2": {"1": {"1": {"1": {"5": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 2.449489742783178}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 19, "d": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}, "2": {"0": {"1": {"8": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "2": {"1": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "2": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "3": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "7": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1.4142135623730951}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 2.23606797749979}, "ultk.language.semantics": {"tf": 1}}, "df": 5, "d": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 5}}, "3": {"1": {"2": {"3": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ultk": {"tf": 1}}, "df": 1}, "3": {"9": {"0": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"2": {"3": {"1": {"0": {"1": {"3": {"3": {"5": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"5": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"ultk": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 2.23606797749979}}, "df": 4}, "4": {"0": {"0": {"0": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}, "6": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {"ultk": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.7320508075688772}}, "df": 2}, "5": {"2": {"5": {"1": {"1": {"8": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"4": {"6": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ultk": {"tf": 1}}, "df": 1}, "6": {"8": {"1": {"0": {"6": {"8": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ultk.language.semantics": {"tf": 1}}, "df": 1}, "7": {"4": {"6": {"2": {"9": {"6": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"2": {"2": {"2": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"7": {"docs": {}, "df": 0, "\u2013": {"7": {"9": {"4": {"2": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"2": {"0": {"1": {"0": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"2": {"2": {"8": {"0": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"1": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ultk": {"tf": 14.317821063276353}, "ultk.effcomm": {"tf": 6.928203230275509}, "ultk.effcomm.agent": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 4.69041575982343}, "ultk.effcomm.agent.CommunicativeAgent.language": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.shape": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.weights": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 5}, "ultk.effcomm.agent.CommunicativeAgent.referent_to_index": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.index_to_referent": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.expression_to_index": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.index_to_expression": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 4.47213595499958}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 4.69041575982343}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 6.557438524302}, "ultk.effcomm.agent.Speaker": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 4.69041575982343}, "ultk.effcomm.agent.Speaker.S": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 2.6457513110645907}, "ultk.effcomm.agent.Listener": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.Listener.__init__": {"tf": 4.69041575982343}, "ultk.effcomm.agent.Listener.R": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 2}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 4.69041575982343}, "ultk.effcomm.agent.LiteralSpeaker.S": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralListener": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 4.69041575982343}, "ultk.effcomm.agent.LiteralListener.R": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 6.164414002968976}, "ultk.effcomm.agent.PragmaticSpeaker.S": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 5.5677643628300215}, "ultk.effcomm.agent.PragmaticListener.R": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.BayesianListener": {"tf": 4.898979485566356}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 4.69041575982343}, "ultk.effcomm.analysis": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.get_dataframe": {"tf": 6.855654600401044}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 6.928203230275509}, "ultk.effcomm.analysis.trade_off_means": {"tf": 12.68857754044952}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 9.746794344808963}, "ultk.effcomm.information": {"tf": 1.7320508075688772}, "ultk.effcomm.information.information_rate": {"tf": 2}, "ultk.effcomm.information.get_rd_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.information.expected_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 6.6332495807108}, "ultk.effcomm.information.blahut_arimoto": {"tf": 7.874007874011811}, "ultk.effcomm.information.get_ib_curve": {"tf": 8.12403840463596}, "ultk.effcomm.information.get_bottleneck": {"tf": 8.54400374531753}, "ultk.effcomm.information.ib_complexity": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_informativity": {"tf": 5.916079783099616}, "ultk.effcomm.information.ib_comm_cost": {"tf": 6}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 6.164414002968976}, "ultk.effcomm.information.ib_accuracy": {"tf": 7.280109889280518}, "ultk.effcomm.information.ib_distortion": {"tf": 7.54983443527075}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 6.6332495807108}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 6.782329983125268}, "ultk.effcomm.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.informativity": {"tf": 7.681145747868608}, "ultk.effcomm.informativity.communicative_success": {"tf": 6.782329983125268}, "ultk.effcomm.optimization": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.Mutation": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.RemoveExpression": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.AddExpression": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 7}, "ultk.effcomm.optimization.EvolutionaryOptimizer.objectives": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.expressions": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutations": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.generations": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 6.244997998398398}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 5.196152422706632}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 5.0990195135927845}, "ultk.effcomm.optimization.sample_parents": {"tf": 6.244997998398398}, "ultk.effcomm.sampling": {"tf": 1.7320508075688772}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 6.48074069840786}, "ultk.effcomm.tradeoff": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.dominates": {"tf": 5}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 4.795831523312719}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 5.5677643628300215}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 6.4031242374328485}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 7}, "ultk.effcomm.util": {"tf": 1.7320508075688772}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 4.358898943540674}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1.7320508075688772}, "ultk.effcomm.util.PRECISION": {"tf": 1.7320508075688772}, "ultk.effcomm.util.marginal": {"tf": 5.0990195135927845}, "ultk.effcomm.util.conditional": {"tf": 5.385164807134504}, "ultk.effcomm.util.joint": {"tf": 5.916079783099616}, "ultk.effcomm.util.marginalize": {"tf": 5.744562646538029}, "ultk.effcomm.util.bayes": {"tf": 4.123105625617661}, "ultk.effcomm.util.xlogx": {"tf": 1.7320508075688772}, "ultk.effcomm.util.H": {"tf": 1.7320508075688772}, "ultk.effcomm.util.MI": {"tf": 1.4142135623730951}, "ultk.effcomm.util.DKL": {"tf": 1.4142135623730951}, "ultk.effcomm.util.gNID": {"tf": 5.744562646538029}, "ultk.language": {"tf": 4}, "ultk.language.grammar": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule": {"tf": 5.385164807134504}, "ultk.language.grammar.Rule.__init__": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule.lhs": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule.rhs": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule.func": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule.name": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule.weight": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression": {"tf": 5}, "ultk.language.grammar.GrammaticalExpression.__init__": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression.rule_name": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression.func": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression.children": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 2.8284271247461903}, "ultk.language.grammar.GrammaticalExpression.evaluate": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression.add_child": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression.to_dict": {"tf": 1.7320508075688772}, "ultk.language.grammar.UniquenessArgs": {"tf": 5}, "ultk.language.grammar.UniquenessArgs.unique_expressions": {"tf": 1.7320508075688772}, "ultk.language.grammar.UniquenessArgs.key": {"tf": 1.7320508075688772}, "ultk.language.grammar.UniquenessArgs.compare_func": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.__init__": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.add_rule": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.parse": {"tf": 4.58257569495584}, "ultk.language.grammar.Grammar.generate": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.enumerate": {"tf": 5.744562646538029}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 5.830951894845301}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 5.291502622129181}, "ultk.language.language": {"tf": 11.661903789690601}, "ultk.language.language.Expression": {"tf": 1.7320508075688772}, "ultk.language.language.Expression.__init__": {"tf": 1.7320508075688772}, "ultk.language.language.Expression.form": {"tf": 1.7320508075688772}, "ultk.language.language.Expression.meaning": {"tf": 1.7320508075688772}, "ultk.language.language.Expression.can_express": {"tf": 1.7320508075688772}, "ultk.language.language.Expression.to_dict": {"tf": 1.7320508075688772}, "ultk.language.language.Language": {"tf": 1.7320508075688772}, "ultk.language.language.Language.__init__": {"tf": 1.7320508075688772}, "ultk.language.language.Language.expressions": {"tf": 1.7320508075688772}, "ultk.language.language.Language.universe": {"tf": 1.7320508075688772}, "ultk.language.language.Language.add_expression": {"tf": 1.7320508075688772}, "ultk.language.language.Language.pop": {"tf": 1.7320508075688772}, "ultk.language.language.Language.is_natural": {"tf": 1.7320508075688772}, "ultk.language.language.Language.degree_property": {"tf": 1.7320508075688772}, "ultk.language.language.Language.binary_matrix": {"tf": 2.6457513110645907}, "ultk.language.language.Language.to_dict": {"tf": 1.7320508075688772}, "ultk.language.language.aggregate_expression_complexity": {"tf": 5.656854249492381}, "ultk.language.sampling": {"tf": 1.7320508075688772}, "ultk.language.sampling.powerset": {"tf": 5.916079783099616}, "ultk.language.sampling.all_meanings": {"tf": 1.7320508075688772}, "ultk.language.sampling.all_expressions": {"tf": 1.7320508075688772}, "ultk.language.sampling.all_languages": {"tf": 5.5677643628300215}, "ultk.language.sampling.upto_comb": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_languages": {"tf": 14.352700094407323}, "ultk.language.sampling.generate_languages": {"tf": 15.394804318340652}, "ultk.language.sampling.sample_lang_size": {"tf": 6.855654600401044}, "ultk.language.sampling.sample_quasi_natural": {"tf": 6.782329983125268}, "ultk.language.sampling.rename_id": {"tf": 2.23606797749979}, "ultk.language.sampling.enumerate_all_languages": {"tf": 8.06225774829855}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 6.244997998398398}, "ultk.language.semantics": {"tf": 15.556349186104045}, "ultk.language.semantics.Referent": {"tf": 1.7320508075688772}, "ultk.language.semantics.Referent.__init__": {"tf": 3.605551275463989}, "ultk.language.semantics.Referent.name": {"tf": 1.7320508075688772}, "ultk.language.semantics.Referent.to_dict": {"tf": 1.7320508075688772}, "ultk.language.semantics.Universe": {"tf": 1.7320508075688772}, "ultk.language.semantics.Universe.__init__": {"tf": 1.7320508075688772}, "ultk.language.semantics.Universe.referents": {"tf": 1.7320508075688772}, "ultk.language.semantics.Universe.set_prior": {"tf": 1.7320508075688772}, "ultk.language.semantics.Universe.prior_numpy": {"tf": 1.7320508075688772}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 3.872983346207417}, "ultk.language.semantics.Universe.from_csv": {"tf": 2.23606797749979}, "ultk.language.semantics.Meaning": {"tf": 2.449489742783178}, "ultk.language.semantics.Meaning.__init__": {"tf": 5.385164807134504}, "ultk.language.semantics.Meaning.referents": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning.universe": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning.to_dict": {"tf": 1.7320508075688772}}, "df": 193, "t": {"docs": {"ultk": {"tf": 2}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 5, "h": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 4.358898943540674}, "ultk.effcomm": {"tf": 4.358898943540674}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 2.6457513110645907}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 2.449489742783178}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 3.4641016151377544}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 2.6457513110645907}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 2.8284271247461903}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.get_dataframe": {"tf": 2.6457513110645907}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 2.8284271247461903}, "ultk.effcomm.analysis.trade_off_means": {"tf": 2.23606797749979}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 3.1622776601683795}, "ultk.effcomm.information.information_rate": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 3.1622776601683795}, "ultk.effcomm.information.blahut_arimoto": {"tf": 4.242640687119285}, "ultk.effcomm.information.get_ib_curve": {"tf": 3.605551275463989}, "ultk.effcomm.information.get_bottleneck": {"tf": 4}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 2.23606797749979}, "ultk.effcomm.information.ib_comm_cost": {"tf": 2}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_accuracy": {"tf": 2}, "ultk.effcomm.information.ib_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 3.872983346207417}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 3.4641016151377544}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 2.8284271247461903}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 2}, "ultk.effcomm.optimization.sample_parents": {"tf": 2.6457513110645907}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 2}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 3.1622776601683795}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 2.8284271247461903}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 4}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1.4142135623730951}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1.4142135623730951}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}, "ultk.language": {"tf": 2}, "ultk.language.grammar.Rule": {"tf": 2.23606797749979}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 2.23606797749979}, "ultk.language.grammar.UniquenessArgs": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.parse": {"tf": 2.449489742783178}, "ultk.language.grammar.Grammar.enumerate": {"tf": 2.449489742783178}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 3.3166247903554}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}, "ultk.language.language": {"tf": 1.7320508075688772}, "ultk.language.language.Expression.can_express": {"tf": 1.4142135623730951}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1.4142135623730951}, "ultk.language.language.aggregate_expression_complexity": {"tf": 2.23606797749979}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 5.0990195135927845}, "ultk.language.sampling.sample_lang_size": {"tf": 2.449489742783178}, "ultk.language.sampling.sample_quasi_natural": {"tf": 2.449489742783178}, "ultk.language.sampling.enumerate_all_languages": {"tf": 3.7416573867739413}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}, "ultk.language.semantics": {"tf": 2.449489742783178}, "ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning.__init__": {"tf": 3.3166247903554}}, "df": 94, "y": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 6}, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 7}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 4}}, "m": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.language.language": {"tf": 1}}, "df": 2}, "n": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 3}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 2}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 2}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 2}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1.7320508075688772}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 28}, "n": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 2}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1.7320508075688772}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 2}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 27}, "n": {"docs": {}, "df": 0, "k": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1, "t": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {"ultk": {"tf": 3.3166247903554}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 2}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.Listener.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.LiteralListener": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.analysis.get_dataframe": {"tf": 2.23606797749979}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.trade_off_means": {"tf": 2}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 2}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 2.6457513110645907}, "ultk.effcomm.information.get_bottleneck": {"tf": 3}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.informativity": {"tf": 2}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 2.6457513110645907}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 2}, "ultk.effcomm.optimization.sample_parents": {"tf": 2.23606797749979}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 2.23606797749979}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 2}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language": {"tf": 1.4142135623730951}, "ultk.language.grammar.Rule": {"tf": 2.449489742783178}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 2.6457513110645907}, "ultk.language.grammar.Grammar.enumerate": {"tf": 3.4641016151377544}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2.23606797749979}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 2}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 3}, "ultk.language.sampling.generate_languages": {"tf": 3.4641016151377544}, "ultk.language.sampling.sample_lang_size": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 2.8284271247461903}, "ultk.language.semantics": {"tf": 2}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.7320508075688772}}, "df": 66, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 2.23606797749979}}, "df": 2}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 3}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"ultk": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 2, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 2}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.7320508075688772}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.grammar.Rule.is_terminal": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "{": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 9, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.semantics.Meaning": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 7, "s": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 3, "s": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_accuracy": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 2}}, "df": 6, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 2}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 2}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 2, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"ultk.language": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.semantics": {"tf": 2}, "ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning.__init__": {"tf": 2.23606797749979}}, "df": 10}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 2}, "ultk.language.grammar.Grammar.enumerate": {"tf": 2.23606797749979}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 2}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.semantics.Meaning": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "k": {"docs": {"ultk": {"tf": 3}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.language": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 7}}}, "p": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 2}}, "df": 9, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 1, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_lang_size": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.7320508075688772}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}}, "df": 6}, "s": {"docs": {"ultk.language.sampling.rename_id": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}, "ultk.language.language": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 14, "d": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 2}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 18}, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 8}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 7}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 5}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}}, "df": 4}}}}}}}}}}, "l": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.language": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 2.23606797749979}, "ultk.language.sampling.sample_lang_size": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.rename_id": {"tf": 1}}, "df": 6, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 2.8284271247461903}, "ultk.effcomm": {"tf": 2.449489742783178}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 2}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1.7320508075688772}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 2.6457513110645907}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 2}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 2}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 2}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language": {"tf": 2.23606797749979}, "ultk.language.language": {"tf": 2.6457513110645907}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1.4142135623730951}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 2}, "ultk.language.sampling.all_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_languages": {"tf": 2.449489742783178}, "ultk.language.sampling.generate_languages": {"tf": 2.449489742783178}, "ultk.language.sampling.sample_lang_size": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}, "ultk.language.semantics": {"tf": 2.23606797749979}, "ultk.language.semantics.Referent": {"tf": 1}}, "df": 47, "s": {"docs": {"ultk": {"tf": 2.449489742783178}, "ultk.effcomm": {"tf": 3}, "ultk.effcomm.analysis.get_dataframe": {"tf": 2}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 2.449489742783178}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.sample_parents": {"tf": 2.8284271247461903}, "ultk.effcomm.sampling": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 2}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 2.6457513110645907}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1.4142135623730951}, "ultk.language": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 3.605551275463989}, "ultk.language.sampling.generate_languages": {"tf": 4}, "ultk.language.sampling.sample_lang_size": {"tf": 2.6457513110645907}, "ultk.language.sampling.sample_quasi_natural": {"tf": 2.449489742783178}, "ultk.language.sampling.enumerate_all_languages": {"tf": 3.3166247903554}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}}, "df": 30, "e": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.language": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 4}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 2}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 2}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 2.23606797749979}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_lang_size": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 30, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 2}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.7320508075688772}, "ultk.language.semantics": {"tf": 1}}, "df": 14, "s": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}}, "df": 2}}}}}, "[": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.7320508075688772}, "ultk.language.semantics": {"tf": 1}}, "df": 9, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 3}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}}, "df": 1}}, "w": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.util.xlogx": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ultk": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 8}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1.7320508075688772}, "ultk.language": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}}, "df": 2}}, "f": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "t": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}, "h": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}}, "df": 4}}}, "i": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 2}, "ultk.effcomm.tradeoff.dominates": {"tf": 1.7320508075688772}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 2}}, "df": 13, "n": {"docs": {"ultk": {"tf": 3.3166247903554}, "ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.effcomm.agent": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 2}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 2}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 2.23606797749979}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.semantics": {"tf": 2}, "ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 39, "t": {"docs": {"ultk.language.sampling.sample_lang_size": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}}, "df": 2, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 2}}, "df": 1, "d": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.sampling": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 9}}, "f": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.information.get_bottleneck": {"tf": 2}, "ultk.effcomm.information.ib_informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 2.23606797749979}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.util": {"tf": 1}}, "df": 12}}}, "e": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.util.MI": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.util.gNID": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 2}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 2}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}}, "df": 11, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 4, "s": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {"ultk": {"tf": 3}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralListener": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 2}, "ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 2.23606797749979}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 2.449489742783178}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 2}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 2}, "ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.7320508075688772}}, "df": 40, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"ultk": {"tf": 1.7320508075688772}, "ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.4142135623730951}}, "df": 15, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.optimization": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1.7320508075688772}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 2}, "ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 17, "f": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.semantics": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm": {"tf": 1.7320508075688772}}, "df": 1}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.language": {"tf": 1}, "ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.language": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "b": {"6": {"2": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 2.6457513110645907}, "ultk.language.sampling.sample_lang_size": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}}, "df": 5, "e": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 1}}, "b": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}}, "df": 8}, "[": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.information.information_rate": {"tf": 1}}, "df": 1}, "u": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_distortion": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "u": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}}, "df": 4}, "w": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_complexity": {"tf": 1}}, "df": 2}}}, "x": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.util.MI": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}}}, "|": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 2}}, "i": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}}, "df": 1}}, "a": {"docs": {"ultk": {"tf": 3.3166247903554}, "ultk.effcomm": {"tf": 3.3166247903554}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 2}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 2.6457513110645907}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Listener.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.LiteralListener": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 2}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.analysis.get_dataframe": {"tf": 2.23606797749979}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 2.8284271247461903}, "ultk.effcomm.analysis.trade_off_means": {"tf": 2}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 3}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 2.6457513110645907}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 2}, "ultk.effcomm.informativity.informativity": {"tf": 3.605551275463989}, "ultk.effcomm.informativity.communicative_success": {"tf": 2.449489742783178}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 2.449489742783178}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1.7320508075688772}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 2.6457513110645907}, "ultk.effcomm.tradeoff": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 2}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 2.449489742783178}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 2.6457513110645907}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1.4142135623730951}, "ultk.effcomm.util.joint": {"tf": 1.7320508075688772}, "ultk.effcomm.util.marginalize": {"tf": 1.7320508075688772}, "ultk.effcomm.util.bayes": {"tf": 1}, "ultk.language": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule": {"tf": 2.8284271247461903}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 2.6457513110645907}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 2}, "ultk.language.grammar.Grammar": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.parse": {"tf": 2.449489742783178}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 2.8284271247461903}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2.6457513110645907}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.7320508075688772}, "ultk.language.language": {"tf": 2.8284271247461903}, "ultk.language.language.Expression": {"tf": 1.4142135623730951}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1.4142135623730951}, "ultk.language.language.Language.degree_property": {"tf": 1.4142135623730951}, "ultk.language.language.Language.binary_matrix": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 2}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 2.6457513110645907}, "ultk.language.sampling.generate_languages": {"tf": 2.8284271247461903}, "ultk.language.sampling.sample_lang_size": {"tf": 2}, "ultk.language.sampling.sample_quasi_natural": {"tf": 2}, "ultk.language.sampling.rename_id": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.7320508075688772}, "ultk.language.semantics": {"tf": 3.872983346207417}, "ultk.language.semantics.Referent": {"tf": 1.4142135623730951}, "ultk.language.semantics.Referent.__init__": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 2.23606797749979}, "ultk.language.semantics.Universe.from_csv": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning": {"tf": 2.23606797749979}, "ultk.language.semantics.Meaning.__init__": {"tf": 3}}, "df": 100, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {"ultk": {"tf": 2.23606797749979}, "ultk.effcomm": {"tf": 2}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_lang_size": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 36, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 2.23606797749979}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1.7320508075688772}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.7320508075688772}}, "df": 4}}}, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.analysis": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"ultk": {"tf": 4.242640687119285}, "ultk.effcomm": {"tf": 2.449489742783178}, "ultk.effcomm.agent": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 2}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.7320508075688772}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 2}, "ultk.effcomm.util": {"tf": 1}, "ultk.language": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}, "ultk.language.language": {"tf": 1}, "ultk.language.language.Expression": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}, "ultk.language.semantics": {"tf": 2}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.7320508075688772}}, "df": 54, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}}, "df": 7, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 6}}}}}}}, "t": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "k": {"docs": {"ultk.effcomm": {"tf": 3}}, "df": 1}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 9}}}}}}}, "l": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_languages": {"tf": 2}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}}, "df": 23, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.language": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 5}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.4142135623730951}}, "df": 17, "a": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.bayes": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 64}}}}}}, "s": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.information.get_rd_curve": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.information.get_bottleneck": {"tf": 2}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 2}, "ultk.effcomm.information.ib_distortion": {"tf": 2}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 2}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 2}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1.4142135623730951}, "ultk.effcomm.util.joint": {"tf": 1.7320508075688772}, "ultk.effcomm.util.marginalize": {"tf": 1.7320508075688772}, "ultk.effcomm.util.bayes": {"tf": 1}}, "df": 18, "s": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 2.23606797749979}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.Listener.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 2.23606797749979}}, "df": 13, "s": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.semantics": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning.__init__": {"tf": 2}}, "df": 25, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 1, "d": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 2, "s": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}, "d": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.language": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.semantics": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"ultk": {"tf": 2}}, "df": 1}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 11, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}}, "df": 4}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.language": {"tf": 1}}, "df": 2}}}}}}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 7}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1}, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}}, "df": 3, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"ultk": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 2}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 26, "o": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 9, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Referent": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}}, "df": 6}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 3, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"ultk.effcomm.agent": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm": {"tf": 2.8284271247461903}, "ultk.language": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {"ultk.language.sampling.powerset": {"tf": 2}, "ultk.language.sampling.all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.information.expected_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 2.23606797749979}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 8, "s": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 3, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1.4142135623730951}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1}}, "df": 12, "s": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 2}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.sampling.random_languages": {"tf": 2.23606797749979}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 2.449489742783178}, "ultk.language.sampling.sample_lang_size": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 2}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 7}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 3}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk": {"tf": 2.23606797749979}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 5, "s": {"docs": {"ultk": {"tf": 1.7320508075688772}, "ultk.language": {"tf": 1}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 4}}}}}}}, "t": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 15, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}}, "df": 2}}, "e": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 7, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1}, "n": {"docs": {"ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}}, "df": 2}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}}, "df": 3}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 8, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 2}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.7320508075688772}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 15, "s": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 2.449489742783178}}, "df": 3}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}}, "df": 6}, "s": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 3}}, "c": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 2}}, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}}, "df": 7}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.sampling": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 2.6457513110645907}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 7}}}, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 3.3166247903554}, "ultk.language.sampling.generate_languages": {"tf": 3.1622776601683795}, "ultk.language.sampling.sample_lang_size": {"tf": 2}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.7320508075688772}, "ultk.language.sampling.enumerate_all_languages": {"tf": 2.23606797749979}}, "df": 9, "s": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}}, "df": 2}, "d": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 2.23606797749979}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.rename_id": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 6}}, "y": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}}, "df": 6}}, "s": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"ultk": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 4, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "e": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 3}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.language.sampling.powerset": {"tf": 2}, "ultk.language.sampling.all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 4.123105625617661}, "ultk.language.sampling.generate_languages": {"tf": 3.3166247903554}, "ultk.language.sampling.sample_lang_size": {"tf": 2}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 13, "s": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 3, "d": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.language": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}}, "z": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}}, "df": 7}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.information.get_bottleneck": {"tf": 2.23606797749979}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_accuracy": {"tf": 2}, "ultk.effcomm.information.ib_distortion": {"tf": 2}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 2}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 2}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1.4142135623730951}, "ultk.effcomm.util.joint": {"tf": 1.4142135623730951}, "ultk.effcomm.util.marginalize": {"tf": 1.7320508075688772}, "ultk.effcomm.util.bayes": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1.7320508075688772}, "ultk.language.language.Language.binary_matrix": {"tf": 1}}, "df": 19}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}}, "df": 6}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.language": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.language": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 1}}}}}}, "e": {"1": {"3": {"1": {"4": {"2": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 2.449489742783178}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 2}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 33, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 3}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 9}, "c": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm": {"tf": 2}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 2.8284271247461903}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 2}}, "df": 2, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.semantics.Meaning": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2.23606797749979}, "ultk.language.language": {"tf": 1.7320508075688772}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.language.Language": {"tf": 1}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1.7320508075688772}}, "df": 22, "s": {"docs": {"ultk": {"tf": 1.7320508075688772}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 2}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 2}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.enumerate": {"tf": 2}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 2.6457513110645907}, "ultk.language.sampling.random_languages": {"tf": 3.3166247903554}, "ultk.language.sampling.generate_languages": {"tf": 3.4641016151377544}, "ultk.language.sampling.sample_lang_size": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.7320508075688772}}, "df": 37}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 4}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.PragmaticListener": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 3, "s": {"docs": {"ultk": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 5}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1.4142135623730951}}, "df": 20}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1.4142135623730951}}, "df": 8, "s": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}, "ultk.effcomm.util.gNID": {"tf": 1}}, "df": 2}}, "s": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 5}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 5, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"ultk.effcomm.agent": {"tf": 1}}, "df": 1}}, "|": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1.7320508075688772}}, "df": 1}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 3}}, "s": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 4}}}}, "[": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.information.ib_distortion": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.powerset": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.semantics": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "c": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 2}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 7, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 2.6457513110645907}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 9}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 2}, "ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 2}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 23, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}}, "df": 8, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 2.23606797749979}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 2}, "ultk.effcomm.util": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 2}}, "df": 15}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.language.aggregate_expression_complexity": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.util": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.bayes": {"tf": 1}, "ultk.effcomm.util.xlogx": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}, "ultk.effcomm.util.MI": {"tf": 1}, "ultk.effcomm.util.DKL": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}}, "df": 22, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1}, "d": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.semantics": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {"ultk.language.sampling.upto_comb": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 2}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 9, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.language": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {"ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.language": {"tf": 1}}, "df": 2, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 2.23606797749979}, "ultk.language": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.language.Expression": {"tf": 1}, "ultk.language.language.Language": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 10}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.grammar.Rule": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}, "t": {"docs": {"ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1.7320508075688772}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 2}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 5}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 10}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"ultk.language.grammar.Grammar": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}}, "df": 2}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1.4142135623730951}, "ultk.language.language.Language.degree_property": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.information.get_bottleneck": {"tf": 2}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 2.6457513110645907}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 2}}, "df": 9}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.language": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.information.get_bottleneck": {"tf": 2}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.7320508075688772}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 3}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 4}}, "a": {"docs": {"ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.language": {"tf": 1.7320508075688772}, "ultk.language.language": {"tf": 1.4142135623730951}, "ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 6}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}, "h": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"1": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}, "docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}, "i": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 29, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}, "ultk.language": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}, "ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.bayes": {"tf": 1}}, "df": 7}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"ultk": {"tf": 4.123105625617661}, "ultk.effcomm": {"tf": 4.242640687119285}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 2.23606797749979}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_means": {"tf": 2.23606797749979}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 2.8284271247461903}, "ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 2.6457513110645907}, "ultk.effcomm.information.blahut_arimoto": {"tf": 3.4641016151377544}, "ultk.effcomm.information.get_ib_curve": {"tf": 3.4641016151377544}, "ultk.effcomm.information.get_bottleneck": {"tf": 3.605551275463989}, "ultk.effcomm.information.ib_complexity": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 2}, "ultk.effcomm.information.ib_accuracy": {"tf": 2.449489742783178}, "ultk.effcomm.information.ib_distortion": {"tf": 2}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 2}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 2}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 2.6457513110645907}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 3.1622776601683795}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 2.6457513110645907}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1.7320508075688772}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 2.8284271247461903}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 2}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 2.23606797749979}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 2.449489742783178}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 3.1622776601683795}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1.7320508075688772}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1.4142135623730951}, "ultk.effcomm.util.joint": {"tf": 1.4142135623730951}, "ultk.effcomm.util.marginalize": {"tf": 1.7320508075688772}, "ultk.effcomm.util.bayes": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1.7320508075688772}, "ultk.language": {"tf": 2}, "ultk.language.grammar.Rule": {"tf": 2.449489742783178}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1.7320508075688772}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1.7320508075688772}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 2.449489742783178}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2.23606797749979}, "ultk.language.language.Language.add_expression": {"tf": 1}, "ultk.language.language.Language.pop": {"tf": 1.4142135623730951}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1.4142135623730951}, "ultk.language.sampling.powerset": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 2.449489742783178}, "ultk.language.sampling.upto_comb": {"tf": 1.7320508075688772}, "ultk.language.sampling.random_languages": {"tf": 2.6457513110645907}, "ultk.language.sampling.generate_languages": {"tf": 4.123105625617661}, "ultk.language.sampling.sample_lang_size": {"tf": 3}, "ultk.language.sampling.sample_quasi_natural": {"tf": 2.6457513110645907}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 3.605551275463989}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.7320508075688772}, "ultk.language.semantics": {"tf": 2.449489742783178}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 2}, "ultk.language.semantics.Meaning": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning.__init__": {"tf": 2.8284271247461903}}, "df": 89, "f": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 9, "s": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1, "l": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 5}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 8}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 12, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 5}}, "e": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 8, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 3}}}, "r": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.7320508075688772}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.language": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 31, "g": {"docs": {}, "df": 0, "/": {"1": {"0": {"docs": {"ultk": {"tf": 2.449489742783178}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"1": {"0": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {"ultk.language.grammar.Rule.is_terminal": {"tf": 1}}, "df": 1}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.language.Language": {"tf": 1}, "ultk.language.semantics": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.4142135623730951}}, "df": 7}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.7320508075688772}}, "df": 19}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.language": {"tf": 1}}, "df": 4, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"ultk": {"tf": 2.449489742783178}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 2}, "ultk.effcomm.analysis.trade_off_means": {"tf": 2.449489742783178}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 3}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 12, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "e": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 2, "/": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.parse": {"tf": 2.6457513110645907}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1.4142135623730951}}, "df": 16, "s": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 3}, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.LiteralListener": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.7320508075688772}, "ultk.language.language.Language.binary_matrix": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1.4142135623730951}}, "df": 8, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.language": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 2}}}}}}}}}}, "s": {"docs": {"ultk.language.semantics": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.semantics": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.semantics": {"tf": 1}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 2}, "ultk.language.sampling.sample_lang_size": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}}, "df": 12}, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1.4142135623730951}, "ultk.effcomm.util.joint": {"tf": 1.7320508075688772}, "ultk.effcomm.util.marginalize": {"tf": 1.7320508075688772}, "ultk.effcomm.util.bayes": {"tf": 1}}, "df": 6}}}}, "o": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 6, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}}, "df": 1, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}}, "df": 4}}}}}}}}, "n": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}}, "df": 7, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 6}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 2}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 10, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 4}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.7320508075688772}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.sampling.rename_id": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 7}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 13, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"ultk": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.semantics": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 2}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 2}, "ultk.effcomm.information.ib_distortion": {"tf": 2}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 2}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 2}, "ultk.language.sampling.sample_lang_size": {"tf": 1.7320508075688772}, "ultk.language.semantics.Referent.__init__": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 30}}}, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.sampling.upto_comb": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 2}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.semantics": {"tf": 1}}, "df": 1, "y": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.powerset": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "f": {"1": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}}, "df": 1}, "2": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.semantics": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Referent.__init__": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.language": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.semantics": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 2.23606797749979}}, "df": 9}}}}, "s": {"docs": {"ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 12, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.language.Language.pop": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1.4142135623730951}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 40}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}}, "df": 6}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1, "d": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.language.Language.pop": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.blahut_arimoto": {"tf": 2.23606797749979}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 9}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.7320508075688772}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 2.449489742783178}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.4142135623730951}}, "df": 7}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 5, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Rule": {"tf": 2}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"ultk.language.grammar.Rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 5}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1}}, "df": 1}}, "w": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1.7320508075688772}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 6, "s": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}, "s": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 2.23606797749979}, "ultk.effcomm.information.ib_accuracy": {"tf": 2}, "ultk.effcomm.information.ib_distortion": {"tf": 2}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 2}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 7, "h": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"ultk": {"tf": 1.7320508075688772}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2.23606797749979}, "ultk.language.language.Language.binary_matrix": {"tf": 1.4142135623730951}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 29}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 6}}, "n": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 14}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.language.Language.degree_property": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 3}}, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.4142135623730951}}, "df": 2}, "y": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 3, "s": {"docs": {"ultk.language.sampling.upto_comb": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 9, "l": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 8}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 2}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.sample_parents": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 2}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.4142135623730951}}, "df": 28, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 16}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 4}}}}}, "t": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"ultk.language": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.util.gNID": {"tf": 1.4142135623730951}}, "df": 4}, "|": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}}, "df": 5}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}}, "df": 1}}}}, "|": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}}, "df": 2}}}, "h": {"docs": {"ultk.effcomm.util.H": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 7}}, "s": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}}, "df": 7}, "t": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 2}, "ultk.effcomm.information.blahut_arimoto": {"tf": 2}, "ultk.effcomm.information.ib_distortion": {"tf": 1.4142135623730951}}, "df": 3, "{": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 2.23606797749979}}, "df": 4, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "i": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {"ultk.effcomm.information.expected_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1.4142135623730951}}, "df": 2, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}}, "df": 2}}}}}, "[": {"docs": {}, "df": 0, "j": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.Rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"ultk": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.util": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.semantics.Meaning": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {"ultk": {"tf": 2.449489742783178}}, "df": 1}, "c": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "#": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 2}, "ultk.language": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language": {"tf": 1}, "ultk.language.language.Language.is_natural": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1.4142135623730951}, "ultk.effcomm.util.DKL": {"tf": 1}}, "df": 5, "o": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 2}}}}}}}}}}, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.blahut_arimoto": {"tf": 2.23606797749979}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1.4142135623730951}}, "df": 9}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1.4142135623730951}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.7320508075688772}}, "df": 20, "s": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 8}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.util.gNID": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.ib_comm_cost": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.util.DKL": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 15, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.semantics.Meaning": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.LiteralListener": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}, "ultk.language.language": {"tf": 1.4142135623730951}, "ultk.language.semantics": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 10, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 4}, "s": {"docs": {"ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.language": {"tf": 1}}, "df": 3}}}, "d": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.util.marginal": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 11, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}}, "df": 5}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.PragmaticListener": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.informativity.indicator_utility": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 2.23606797749979}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_means": {"tf": 2}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 6, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 2.23606797749979}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1.7320508075688772}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 7}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 2}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 2}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}}, "df": 2}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.information.expected_distortion": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}}, "df": 2}}}, "p": {"1": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 2}}, "df": 2, "[": {"docs": {}, "df": 0, "i": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1.4142135623730951}}, "df": 1}}}, "2": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 2}}, "df": 2, "[": {"docs": {}, "df": 0, "i": {"docs": {"ultk.effcomm.tradeoff.dominates": {"tf": 1.4142135623730951}}, "df": 1}}}, "docs": {"ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener": {"tf": 2.23606797749979}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.expected_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 2}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 2}, "ultk.effcomm.information.ib_distortion": {"tf": 2}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.communicative_success": {"tf": 2.8284271247461903}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1.4142135623730951}, "ultk.effcomm.util.conditional": {"tf": 1.4142135623730951}, "ultk.effcomm.util.joint": {"tf": 1.7320508075688772}, "ultk.effcomm.util.marginalize": {"tf": 1.7320508075688772}, "ultk.effcomm.util.bayes": {"tf": 1.7320508075688772}, "ultk.effcomm.util.xlogx": {"tf": 1}, "ultk.effcomm.util.H": {"tf": 1.4142135623730951}}, "df": 24, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1.7320508075688772}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.semantics": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}}, "df": 15}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm": {"tf": 2}, "ultk.effcomm.analysis.trade_off_means": {"tf": 2}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 2}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}, "ultk.language.semantics": {"tf": 1}}, "df": 5}}}, "y": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1.7320508075688772}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 2}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.7320508075688772}}, "df": 13}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticListener": {"tf": 2}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}}, "df": 16}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_means": {"tf": 2.6457513110645907}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 3.1622776601683795}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm": {"tf": 2}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe": {"tf": 1}}, "df": 12}, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}}, "df": 5, "s": {"docs": {"ultk.effcomm.information.get_rd_curve": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 2}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 2.449489742783178}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 2}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 8}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.sampling.powerset": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_optimal_languages": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 2.23606797749979}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.7320508075688772}}, "df": 9}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1.4142135623730951}}, "df": 2}}}, "t": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 4}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 2, "s": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1.4142135623730951}, "ultk.effcomm.util.bayes": {"tf": 1}}, "df": 5, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}}, "#": {"docs": {}, "df": 0, "l": {"4": {"0": {"docs": {"ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.semantics.Meaning": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1, "d": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 2}}, "df": 1}}}}}}, "d": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1}}, "df": 1}, "x": {"docs": {"ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}}, "df": 4, "y": {"docs": {"ultk.effcomm.util.marginal": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1}, "ultk.effcomm.util.joint": {"tf": 1}}, "df": 3}}, "w": {"docs": {"ultk.effcomm.util.gNID": {"tf": 1}}, "df": 1}, "v": {"docs": {"ultk.effcomm.util.gNID": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 2.449489742783178}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 2.449489742783178}, "ultk.effcomm.agent.BayesianListener": {"tf": 2.23606797749979}, "ultk.effcomm.information.ib_accuracy": {"tf": 2.8284271247461903}, "ultk.effcomm.information.ib_distortion": {"tf": 3.4641016151377544}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 2.23606797749979}, "ultk.effcomm.informativity.informativity": {"tf": 2.6457513110645907}, "ultk.effcomm.informativity.communicative_success": {"tf": 3.605551275463989}}, "df": 11, "i": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}}, "df": 5}}, "a": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1, "l": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.language.Expression": {"tf": 1}, "ultk.language.language.Language": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}}, "df": 1}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.semantics.Meaning": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.language.sampling.powerset": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 2.449489742783178}}, "df": 8, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 6}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.language": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"ultk.language.language": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}}, "df": 1}}, "t": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1.4142135623730951}}, "df": 3, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}}, "df": 6}}}, "x": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}}, "df": 11}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}, "h": {"docs": {"ultk.language.sampling.upto_comb": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.information.ib_comm_cost": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "y": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}, "ultk.language.semantics": {"tf": 1}}, "df": 6}, "d": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 6}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1.7320508075688772}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 6}}}, "e": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 10, "s": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}}, "df": 3}, "d": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_accuracy": {"tf": 1}, "ultk.effcomm.information.ib_distortion": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 2}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language": {"tf": 2.23606797749979}, "ultk.language.language.Expression": {"tf": 1}, "ultk.language.language.Expression.can_express": {"tf": 1}, "ultk.language.semantics": {"tf": 3}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1.7320508075688772}, "ultk.language.semantics.Meaning.__init__": {"tf": 2}}, "df": 29, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 2.23606797749979}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 2}, "ultk.effcomm.information.get_bottleneck": {"tf": 2.23606797749979}, "ultk.effcomm.information.ib_informativity": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_comm_cost": {"tf": 2}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1.7320508075688772}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 2.23606797749979}, "ultk.effcomm.informativity.informativity": {"tf": 2.23606797749979}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.7320508075688772}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1.7320508075688772}, "ultk.language": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 27}}}}, "s": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 3.872983346207417}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 12}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 1}}, "df": 1, "s": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 3}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.language": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.language": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "|": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.LiteralListener": {"tf": 1}}, "df": 1}, "w": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.Mutation.precondition": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.precondition": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 2}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {"ultk.effcomm.optimization.Mutation.mutate": {"tf": 1}, "ultk.effcomm.optimization.RemoveExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.AddExpression.mutate": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 4, "d": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.mutate": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.util.MI": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 2}}}}, "k": {"docs": {"ultk.language.sampling.upto_comb": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2.23606797749979}}, "df": 4, "s": {"docs": {"ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 4}}}, "l": {"docs": {"ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.util.DKL": {"tf": 1}}, "df": 2, "}": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "m": {"docs": {"ultk.effcomm.information.ib_comm_cost": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "~": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "~": {"docs": {}, "df": 0, "q": {"docs": {"ultk.effcomm.util.DKL": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}, "ultk.language": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"ultk.language.language": {"tf": 2.449489742783178}, "ultk.language.semantics": {"tf": 2.6457513110645907}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.sampling.random_languages": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk": {"tf": 3.3166247903554}, "ultk.effcomm": {"tf": 3.7416573867739413}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 2}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.7320508075688772}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1.4142135623730951}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 2}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.7320508075688772}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.sampling": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.dominates": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1.4142135623730951}, "ultk.language": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1.4142135623730951}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 2.449489742783178}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}, "ultk.language.language": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}, "ultk.language.semantics": {"tf": 2.449489742783178}, "ultk.language.semantics.Referent": {"tf": 1}, "ultk.language.semantics.Universe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 61, "m": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.language": {"tf": 1.4142135623730951}, "ultk.language.language.Expression": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.rename_id": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 18, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {"ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.7320508075688772}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"ultk.language.semantics.Meaning": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk": {"tf": 1.7320508075688772}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 4, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 2}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 2}}, "df": 5}}}}}, "m": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.7320508075688772}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 2}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.upto_comb": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.7320508075688772}, "ultk.language.semantics": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1.4142135623730951}, "ultk.language.semantics.Meaning": {"tf": 1.4142135623730951}}, "df": 30}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}}, "df": 5}}}}}}, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "p": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.util.conditional": {"tf": 1}, "ultk.effcomm.util.bayes": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.gNID": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 2}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.indicator_utility": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 2}, "ultk.effcomm.informativity.communicative_success": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.build_utility_matrix": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1.7320508075688772}, "ultk.language.grammar.Rule.is_terminal": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1.4142135623730951}, "ultk.language.grammar.UniquenessArgs": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.7320508075688772}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1.4142135623730951}}, "df": 17, "s": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.analysis": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.informativity": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.sampling": {"tf": 1}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.util": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 10}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 2}}, "df": 1, "y": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 1}}, "e": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.language.language.aggregate_expression_complexity": {"tf": 1}}, "df": 6}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.language.Expression.can_express": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}}, "df": 4}}}}}}}, "h": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 2}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.analysis.pearson_analysis": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ultk": {"tf": 1}, "ultk.language": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.information": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.information.ib_optimal_decoder": {"tf": 1}}, "df": 3}}}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 2}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 2}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 2.6457513110645907}, "ultk.language.semantics": {"tf": 1.4142135623730951}, "ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Meaning": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1.4142135623730951}}, "df": 36, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.7320508075688772}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.util.gNID": {"tf": 1}, "ultk.language": {"tf": 1}}, "df": 13}, "e": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.information.ib_comm_cost": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.information.get_bottleneck": {"tf": 2}}, "df": 3, "s": {"docs": {"ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 5}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.language": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.semantics.Universe.from_dataframe": {"tf": 1}, "ultk.language.semantics.Universe.from_csv": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 1}}, "t": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 4}, "g": {"docs": {"ultk.effcomm.agent.BayesianListener": {"tf": 1.4142135623730951}}, "df": 1}}, "y": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.initialize_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1.4142135623730951}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 2}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 31}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.LiteralSpeaker": {"tf": 1}, "ultk.effcomm.agent.LiteralListener": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.language.Language.binary_matrix": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.get_rd_curve": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 1.4142135623730951}, "ultk.effcomm.util.conditional": {"tf": 1.7320508075688772}, "ultk.effcomm.util.joint": {"tf": 1.7320508075688772}, "ultk.effcomm.util.marginalize": {"tf": 1.7320508075688772}, "ultk.effcomm.util.bayes": {"tf": 1.4142135623730951}}, "df": 9, "o": {"docs": {}, "df": 0, "u": {"docs": {"ultk": {"tf": 1.7320508075688772}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.tradeoff.interpolate_data": {"tf": 1}}, "df": 1}}, "s": {"docs": {"ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}}, "df": 2}}}}}, "|": {"docs": {}, "df": 0, "x": {"docs": {"ultk.effcomm.util.conditional": {"tf": 1}, "ultk.effcomm.util.joint": {"tf": 1}, "ultk.effcomm.util.marginalize": {"tf": 1}, "ultk.effcomm.util.bayes": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 1}}}}, "v": {"1": {"docs": {}, "df": 0, "i": {"0": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm": {"tf": 1.7320508075688772}, "ultk.effcomm.util": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"ultk.effcomm.util.gNID": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 2}}, "df": 1}}}}}, "y": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"ultk.effcomm.analysis.trade_off_ttest": {"tf": 1.4142135623730951}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.7320508075688772}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1}}, "df": 7, "s": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 7}, "d": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.agent.Listener.normalized_weights": {"tf": 1}, "ultk.effcomm.util.rows_zero_to_uniform": {"tf": 1}}, "df": 5}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"ultk.language.language": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 2}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "s": {"docs": {"ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.effcomm.information.get_bottleneck": {"tf": 1.7320508075688772}}, "df": 2}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.CommunicativeAgent.sample_strategy": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.Listener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.LiteralListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticSpeaker": {"tf": 1}, "ultk.effcomm.agent.PragmaticListener": {"tf": 1}, "ultk.effcomm.agent.BayesianListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.analysis.pearson_analysis": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1.4142135623730951}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1}, "ultk.language.semantics": {"tf": 1}}, "df": 21, "e": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.agent.Speaker.normalized_weights": {"tf": 1}, "ultk.effcomm.analysis.get_dataframe": {"tf": 1}, "ultk.effcomm.analysis.trade_off_means": {"tf": 1}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1.4142135623730951}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.grammar.Grammar.get_all_rules": {"tf": 1}, "ultk.language.language.Language.binary_matrix": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.sample_lang_size": {"tf": 1}, "ultk.language.sampling.random_combination_vocabulary": {"tf": 1}}, "df": 13, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.util.gNID": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.optimization.EvolutionaryOptimizer.fit": {"tf": 1}, "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated": {"tf": 1}, "ultk.effcomm.optimization.sample_parents": {"tf": 1}}, "df": 4, "s": {"docs": {"ultk.effcomm.optimization.EvolutionaryOptimizer.__init__": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.sampling.get_hypothetical_variants": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_expressions": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}}, "df": 9, "d": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.generate_languages": {"tf": 1.7320508075688772}, "ultk.language.sampling.sample_lang_size": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm": {"tf": 1}}, "df": 2, "s": {"docs": {"ultk": {"tf": 1.4142135623730951}, "ultk.effcomm.agent": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ultk": {"tf": 1}, "ultk.language.grammar.Rule": {"tf": 2}, "ultk.language.grammar.GrammaticalExpression": {"tf": 1}, "ultk.language.grammar.GrammaticalExpression.yield_string": {"tf": 1}, "ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.grammar.Grammar.parse": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.from_yaml": {"tf": 1.4142135623730951}}, "df": 10}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.GrammaticalExpression": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.parse": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 3, "s": {"docs": {"ultk.language.grammar.UniquenessArgs": {"tf": 1}, "ultk.language.grammar.Grammar": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate_at_depth": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.tradeoff.tradeoff": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ultk.language.sampling.enumerate_all_languages": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}}, "df": 1, "n": {"docs": {"ultk.effcomm": {"tf": 1}, "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices": {"tf": 1}, "ultk.effcomm.agent.PragmaticSpeaker.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1.4142135623730951}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 1}, "ultk.effcomm.information.get_ib_curve": {"tf": 1}, "ultk.effcomm.information.get_bottleneck": {"tf": 1}, "ultk.effcomm.information.ib_informativity": {"tf": 1}, "ultk.effcomm.information.ib_comm_cost": {"tf": 1}, "ultk.effcomm.information.ib_encoder_to_point": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1.4142135623730951}, "ultk.language.grammar.Grammar.generate": {"tf": 1}, "ultk.language.grammar.Grammar.enumerate": {"tf": 1.4142135623730951}, "ultk.language.language.Language.degree_property": {"tf": 1}, "ultk.language.sampling.powerset": {"tf": 1}, "ultk.language.sampling.all_meanings": {"tf": 1}, "ultk.language.sampling.all_languages": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1.4142135623730951}}, "df": 18}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}, "ultk.effcomm.tradeoff.non_dominated_2d": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.LiteralListener": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ultk.effcomm.agent.LiteralListener": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ultk.effcomm.agent.PragmaticListener.__init__": {"tf": 1}, "ultk.effcomm.informativity.informativity": {"tf": 1}, "ultk.effcomm.informativity.communicative_success": {"tf": 1}}, "df": 3}, "d": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 3.4641016151377544}, "ultk.effcomm.analysis.trade_off_ttest": {"tf": 2.449489742783178}, "ultk.language.language": {"tf": 4.898979485566356}, "ultk.language.sampling.random_languages": {"tf": 3.4641016151377544}, "ultk.language.sampling.generate_languages": {"tf": 4.242640687119285}, "ultk.language.semantics": {"tf": 5.196152422706632}}, "df": 6}}, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"ultk.effcomm.agent.CommunicativeAgent.to_language": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {"ultk": {"tf": 1}, "ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.optimization.sample_parents": {"tf": 1}, "ultk.language.grammar.Grammar.get_unique_expressions": {"tf": 1}, "ultk.language.sampling.upto_comb": {"tf": 1}, "ultk.language.sampling.random_languages": {"tf": 1}, "ultk.language.sampling.enumerate_all_languages": {"tf": 1}, "ultk.language.semantics.Meaning.__init__": {"tf": 1}}, "df": 6}}}}, "q": {"docs": {"ultk.effcomm.information.information_rate": {"tf": 1}, "ultk.effcomm.information.language_to_ib_encoder_decoder": {"tf": 1.4142135623730951}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ultk": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {"ultk.language.sampling.generate_languages": {"tf": 1}, "ultk.language.sampling.sample_quasi_natural": {"tf": 1.7320508075688772}, "ultk.language.sampling.enumerate_all_languages": {"tf": 2.449489742783178}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.analysis.trade_off_means": {"tf": 2.449489742783178}, "ultk.language.language": {"tf": 1.4142135623730951}, "ultk.language.sampling.random_languages": {"tf": 2}, "ultk.language.sampling.generate_languages": {"tf": 2}, "ultk.language.semantics": {"tf": 1.4142135623730951}}, "df": 5}}}}, "x": {"docs": {"ultk.effcomm.information.expected_distortion": {"tf": 1.7320508075688772}, "ultk.effcomm.information.compute_rate_distortion": {"tf": 3.605551275463989}, "ultk.effcomm.information.blahut_arimoto": {"tf": 3.3166247903554}, "ultk.effcomm.tradeoff.pareto_min_distances": {"tf": 1.7320508075688772}, "ultk.effcomm.tradeoff.interpolate_data": {"tf": 1.4142135623730951}, "ultk.effcomm.tradeoff.tradeoff": {"tf": 1}, "ultk.effcomm.util.marginal": {"tf": 2}, "ultk.effcomm.util.conditional": {"tf": 2.23606797749979}, "ultk.effcomm.util.joint": {"tf": 2.449489742783178}, "ultk.effcomm.util.marginalize": {"tf": 2.23606797749979}, "ultk.effcomm.util.bayes": {"tf": 1.7320508075688772}, "ultk.effcomm.util.xlogx": {"tf": 1.4142135623730951}, "ultk.effcomm.util.H": {"tf": 2}, "ultk.effcomm.util.gNID": {"tf": 1.4142135623730951}, "ultk.language.sampling.rename_id": {"tf": 1.4142135623730951}}, "df": 15, "u": {"docs": {"ultk": {"tf": 1}}, "df": 1}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ultk.effcomm.information.compute_rate_distortion": {"tf": 1}}, "df": 1}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"ultk.effcomm.information.blahut_arimoto": {"tf": 1}}, "df": 1}}, "|": {"docs": {}, "df": 0, "y": {"docs": {"ultk.effcomm.util.bayes": {"tf": 1}}, "df": 1}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true};
+ /** pdoc search index */const docs = [{"fullname": "ultk", "modulename": "ultk", "kind": "module", "doc": "\n\n
\n\nIntroduction \n\nULTK is a software library that aims to support efficient communication analyses of natural language. This is a line of research that aims to explain why natural languages have the structure that they do in terms competing pressures to minimize cognitive complexity and maximize communicative accuracy.
\n\nKey features:
\n\n\nPrimitives for constructing semantic spaces, expressions, and languages \nTools for measuring informativity of languages, communicative success of RSA speakers and listeners \nLanguage population sampling and optimization w.r.t Pareto fronts \nRate-Distortion and Information Bottleneck style analyses \n \n\nULTK is a long term project and it is currently in its early stages. It is intended to help lower the barrier to entry for certain research in computational semantics, and to unify methodologies. If you find something confusing, please open an issue. If you have a phenomena of interest in linguistic semantics that you want to run an efficient communication analysis on, please contact the contributors.
\n\nRead the documentation .
\n\nInstalling ULTK \n\nFirst, set up a virtual environment (e.g. via miniconda , conda create -n ultk python=3.11
, and conda activate ultk
).
\n\n\nDownload or clone this repository and navigate to the root folder.
\nInstall ULTK (We recommend doing this inside a virtual environment)
\n\npip install -e .
\n \n\nGetting started \n\n\nCheck out the examples , starting with a simiple efficient communication analysis of indefinites and a comparison of two approaches to efficient communication, with modals as a test case. \nTo see more scaled up usage examples, visit the codebase for an efficient communication analysis of modals or sim-max games . \nFor an introduction to efficient communication research, here is a survey paper of the field. \nFor an introduction to the RSA framework, see this online textbook . \n \n\nModules \n\nThere are two modules. The first is ultk.effcomm , which includes methods for measuring informativity of languages and/or communicative success of Rational Speech Act agents, and for language population sampling and optimization w.r.t Pareto fronts.
\n\nThe second module is ultk.language , which contains primitives for constructing semantic spaces, expressions, and languages. It also has a grammar
module which can be used for building expressions in a Language of Thought and measuring complexity in terms of minimum description length, as well as for natural language syntax.
\n\nThe source code is available on github here .
\n\nTesting \n\nUnit tests are written in pytest and executed via running pytest
in the src/tests
folder.
\n\nReferences \n\n\nFigures:
\n\n\n Kemp, C. & Regier, T. (2012) Kinship Categories Across Languages Reflect General Communicative Principles. Science. https://www.science.org/doi/10.1126/science.1218811
\n \n\n\n Zaslavsky, N., Kemp, C., Regier, T., & Tishby, N. (2018). Efficient compression in color naming and its evolution. Proceedings of the National Academy of Sciences, 115(31), 7937\u20137942. https://doi.org/10.1073/pnas.1800521115
\n \n\n\n Deni\u0107, M., Steinert-Threlkeld, S., & Szymanik, J. (2022). Indefinite Pronouns Optimize the Simplicity/Informativeness Trade-Off. Cognitive Science, 46(5), e13142. https://doi.org/10.1111/cogs.13142
\n \n\n\n Steinert-Threlkeld, S. (2021). Quantifiers in Natural Language: Efficient Communication and Degrees of Semantic Universals. Entropy, 23(10), Article 10. https://doi.org/10.3390/e23101335
\n \n\n
\n\n\nLinks:
\n\n\n Imel, N., & Steinert-Threlkeld, S. (2022). Modal semantic universals optimize the simplicity/informativeness trade-off. Semantics and Linguistic Theory, 1(0), Article 0. https://doi.org/10.3765/salt.v1i0.5346
\n \n\n\n Kemp, C., Xu, Y., & Regier, T. (2018). Semantic Typology and Efficient Communication. Annual Review of Linguistics, 4(1), 109\u2013128. https://doi.org/10.1146/annurev-linguistics-011817-045406
\n \n\n
\n"}, {"fullname": "ultk.effcomm", "modulename": "ultk.effcomm", "kind": "module", "doc": "Tools for measuring languages for communicative efficiency.
\n\nSubmodules divide the labor of a computational experiment performing an efficiency analysis of a language into several parts: generating and sampling the space of possible languages, measuring their properties, and determining which languages optimize efficient trade-offs w.r.t these properties.
\n\nThe ultk.effcomm.sampling
submodule implements several methods for generating hypothetically possible languages of a given type, by sampling from a set of possible expressions, or permuting the expression-meaning mapping of an existing language.
\n\nThe ultk.effcomm.optimization
submodule contains a general implementation of an evolutionary algorithm, which can be used to estimate a Pareto frontier of optimal solutions to an efficiency trade-off. It can also be used as a technique for randomly exploring the space of possible languages.
\n\nThe ultk.effcomm.tradeoff
submodule contains tools for measuring a pool of languages for various properties, finding which languages are Pareto dominant with respect to two properties, and setting attributes of the language objects for further analysis.
\n\nThe ultk.effcomm.analysis
submodule contains tools for performing numerical analyses and producing paradigmatic plots of languages in 2D trade-off space.
\n\nThe ultk.effcomm.information_bottleneck
submodule contains tools for Information Bottleneck based analyses of the communicative efficiency of languages. Specificially, it includes an implementation of the IB-BA algorithm and code for evaluating the efficiency of semantic category systems.
\n\nThe ultk.effcomm.agent
submodule implements classes for constructing various speakers and listeners of a language. These are unified abstractions from the Rational Speech Act framework.
\n\nThe ultk.effcomm.informativity
submodule implements tools for computing the literal or pragmatic informativity of a language, based on speaker/listener abstractions described above.
\n"}, {"fullname": "ultk.effcomm.agent", "modulename": "ultk.effcomm.agent", "kind": "module", "doc": "Classes for representing communicative agents, such as Senders and Receivers figuring in Lewis-Skyrms signaling games, literal and pragmatic agents in the Rational Speech Act framework, etc.
\n"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent", "kind": "class", "doc": "
\n"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.__init__", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.__init__", "kind": "function", "doc": "An agent that uses a language to communicate, e.g. a RSA pragmatic agent or a Lewis-Skyrms signaler.
\n\nArguments: \n\n\nlanguage: a language to construct a agent to define the relation between meanings and expressions, which can be used to initialize the agent matrices (e.g. S
or R
). \nname: an optional string to name the communicative agent \n \n", "signature": "(language : ultk . language . language . Language , ** kwargs ) "}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.language", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.language", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.shape", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.shape", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.weights", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.weights", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.normalized_weights", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.normalized_weights", "kind": "function", "doc": "Return the normalized weights of a CommunicativeAgent so that each row vector represents a probability distribution.
\n", "signature": "(self ) -> None : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.initialize_weights", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.initialize_weights", "kind": "function", "doc": "Initialize the agent's weight matrix.
\n\nArguments: \n\n\nweights: an np.ndarray representing the weights to initialize the agent with. By default None, and the agent's weights will be initialized uniformly. \ninitial: {'ones', 'random'} a str reprsenting the initialization method to use. If 'ones' (default), initialize the weight matrix with np.ones
. If 'random', initalize the weight matrix from np.random.uniform
. \n \n", "signature": "(self , weights : numpy . ndarray = None , initial = 'ones' ) -> None : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.referent_to_index", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.referent_to_index", "kind": "function", "doc": "
\n", "signature": "(self , referent : ultk . language . semantics . Referent ) -> int : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.index_to_referent", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.index_to_referent", "kind": "function", "doc": "
\n", "signature": "(self , index : int ) -> ultk . language . semantics . Referent : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.expression_to_index", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.expression_to_index", "kind": "function", "doc": "
\n", "signature": "(self , expression : ultk . language . language . Expression ) -> int : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.index_to_expression", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.index_to_expression", "kind": "function", "doc": "
\n", "signature": "(self , index : int ) -> ultk . language . language . Expression : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.strategy_to_indices", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.strategy_to_indices", "kind": "function", "doc": "Maps communicative strategies to weights.
\n\nGiven a expression and referent, access the corresponding weight coordinate.
\n\nArguments: \n\n\nstrategy: a dict of the form {\"referent\": Referent, \"expression\": expression} representing an instance of communicative behavior, which we may call a communicative strategy for this agent. \n \n", "signature": "(self , strategy : dict [ str , typing . Any ] ) -> tuple [ int ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.sample_strategy", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.sample_strategy", "kind": "function", "doc": "Sample a communicative strategy (e.g., a word for Speaker's intended referent, or interpretation for Listener's heard word) by uniformly sampling from a row vector of the agent's weight matrix specified by the index.
\n\nArguments: \n\n\nindex: the integer index representing a row of the weight matrix. \n \n\nReturns: \n\n\n the integer index of the agent's choice
\n \n", "signature": "(self , index : int ) -> int : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.agent.CommunicativeAgent.to_language", "modulename": "ultk.effcomm.agent", "qualname": "CommunicativeAgent.to_language", "kind": "function", "doc": "Get a language from the agent, representing its current (possibly learned) communicative behavior.
\n\nThis function uses: \n\n\n \n the agent's weight matrix, \n the set of expression forms, and \n the set of referents \n \n \n\nfrom the language the agent was initialized with to generate a new language accurately reflecting the new expression meanings, e.g. how the agent interprets expressions as meaning zero or more referents.
\n\nArguments: \n\n\nthreshold: a float in [0,1] representing the cutoff for determining if a meaning (referent) can be communicated by a expression. Because weights are not initialized to 0, it is a good idea to set nonzero values as the threshold. \n \n\nReturns: \n\n\n a Language corresponding to the form-meaning mapping defined by the communicative agent's weights.
\n \n", "signature": "(\tself , \tdata : dict = { 'complexity' : None , 'accuracy' : None } , \tthreshold : float = 0.1 ) -> ultk . language . language . Language : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.agent.Speaker", "modulename": "ultk.effcomm.agent", "qualname": "Speaker", "kind": "class", "doc": "
\n", "bases": "CommunicativeAgent"}, {"fullname": "ultk.effcomm.agent.Speaker.__init__", "modulename": "ultk.effcomm.agent", "qualname": "Speaker.__init__", "kind": "function", "doc": "An agent that uses a language to communicate, e.g. a RSA pragmatic agent or a Lewis-Skyrms signaler.
\n\nArguments: \n\n\nlanguage: a language to construct a agent to define the relation between meanings and expressions, which can be used to initialize the agent matrices (e.g. S
or R
). \nname: an optional string to name the communicative agent \n \n", "signature": "(language : ultk . language . language . Language , ** kwargs ) "}, {"fullname": "ultk.effcomm.agent.Speaker.S", "modulename": "ultk.effcomm.agent", "qualname": "Speaker.S", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, {"fullname": "ultk.effcomm.agent.Speaker.normalized_weights", "modulename": "ultk.effcomm.agent", "qualname": "Speaker.normalized_weights", "kind": "function", "doc": "Get the normalized weights of a Speaker.
\n\nEach row vector represents a conditional probability distribution over expressions, P(e | m).
\n", "signature": "(self ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.agent.Listener", "modulename": "ultk.effcomm.agent", "qualname": "Listener", "kind": "class", "doc": "
\n", "bases": "CommunicativeAgent"}, {"fullname": "ultk.effcomm.agent.Listener.__init__", "modulename": "ultk.effcomm.agent", "qualname": "Listener.__init__", "kind": "function", "doc": "An agent that uses a language to communicate, e.g. a RSA pragmatic agent or a Lewis-Skyrms signaler.
\n\nArguments: \n\n\nlanguage: a language to construct a agent to define the relation between meanings and expressions, which can be used to initialize the agent matrices (e.g. S
or R
). \nname: an optional string to name the communicative agent \n \n", "signature": "(language : ultk . language . language . Language , ** kwargs ) "}, {"fullname": "ultk.effcomm.agent.Listener.R", "modulename": "ultk.effcomm.agent", "qualname": "Listener.R", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, {"fullname": "ultk.effcomm.agent.Listener.normalized_weights", "modulename": "ultk.effcomm.agent", "qualname": "Listener.normalized_weights", "kind": "function", "doc": "Normalize the weights of a Listener so that each row vector for the heard expression e represents a conditional probability distribution over referents P(m | e).
\n", "signature": "(self ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.agent.LiteralSpeaker", "modulename": "ultk.effcomm.agent", "qualname": "LiteralSpeaker", "kind": "class", "doc": "A literal speaker chooses utterances without any reasoning about other agents. The literal speaker's conditional probability distribution P(e|m) is uniform over all expressions that can be used to communicate a particular meaning. This is in contrast to a pragmatic speaker, whose conditional distribution is not uniform in this way, but instead biased towards choosing expressions that are less likely to be misinterpreted by some listener.
\n", "bases": "Speaker"}, {"fullname": "ultk.effcomm.agent.LiteralSpeaker.__init__", "modulename": "ultk.effcomm.agent", "qualname": "LiteralSpeaker.__init__", "kind": "function", "doc": "An agent that uses a language to communicate, e.g. a RSA pragmatic agent or a Lewis-Skyrms signaler.
\n\nArguments: \n\n\nlanguage: a language to construct a agent to define the relation between meanings and expressions, which can be used to initialize the agent matrices (e.g. S
or R
). \nname: an optional string to name the communicative agent \n \n", "signature": "(language : ultk . language . language . Language , ** kwargs ) "}, {"fullname": "ultk.effcomm.agent.LiteralSpeaker.S", "modulename": "ultk.effcomm.agent", "qualname": "LiteralSpeaker.S", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, {"fullname": "ultk.effcomm.agent.LiteralListener", "modulename": "ultk.effcomm.agent", "qualname": "LiteralListener", "kind": "class", "doc": "A naive literal listener interprets utterances without any reasoning about other agents. Its conditional probability distribution P(m|e) for guessing meanings is uniform over all meanings that can be denoted by the particular expression heard. This is in contrast to a pragmatic listener, whose conditional distribution is biased to guess meanings that a pragmatic speaker most likely intended.
\n", "bases": "Listener"}, {"fullname": "ultk.effcomm.agent.LiteralListener.__init__", "modulename": "ultk.effcomm.agent", "qualname": "LiteralListener.__init__", "kind": "function", "doc": "An agent that uses a language to communicate, e.g. a RSA pragmatic agent or a Lewis-Skyrms signaler.
\n\nArguments: \n\n\nlanguage: a language to construct a agent to define the relation between meanings and expressions, which can be used to initialize the agent matrices (e.g. S
or R
). \nname: an optional string to name the communicative agent \n \n", "signature": "(language : ultk . language . language . Language , ** kwargs ) "}, {"fullname": "ultk.effcomm.agent.LiteralListener.R", "modulename": "ultk.effcomm.agent", "qualname": "LiteralListener.R", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, {"fullname": "ultk.effcomm.agent.PragmaticSpeaker", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticSpeaker", "kind": "class", "doc": "A pragmatic speaker chooses utterances based on how a listener would interpret them. A pragmatic speaker may be initialized with any kind of listener, e.g. literal or pragmatic -- meaning the recursive reasoning can be modeled up to arbitrary depth.
\n", "bases": "Speaker"}, {"fullname": "ultk.effcomm.agent.PragmaticSpeaker.__init__", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticSpeaker.__init__", "kind": "function", "doc": "Initialize the |M|-by-|E| matrix, S, corresponding to the pragmatic speaker's conditional probability distribution over expressions given meanings.
\n\nThe pragmatic speaker chooses expressions to communicate their intended meaning according to:
\n\n$P(e | m) \\propto \\exp(t * u(e,m))$
\n\nwhere $t \\in [0,1]$ is a temperature parameter and utility $u$ is defined
\n\n$u(e , m) := \\log(P_{\\text{Listener}}(m | e))$
\n\nArguments: \n\n\nlanguage: the language with |M| meanings and |E| expressions defining the size of S. \nlistener: a communicative agent storing a matrix R representing the conditional distribution over expressions given meanings. \ntemperature: a float \\in [0,1], representing how `optimally rational' the pragmatic speaker is; 1.0 is chosen when no particular assumptions about rationality are made. \n \n", "signature": "(\tlanguage : ultk . language . language . Language , \tlistener : ultk . effcomm . agent . Listener , \ttemperature : float = 1.0 , \t** kwargs ) "}, {"fullname": "ultk.effcomm.agent.PragmaticSpeaker.S", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticSpeaker.S", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, {"fullname": "ultk.effcomm.agent.PragmaticListener", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticListener", "kind": "class", "doc": "A pragmatic listener interprets utterances based on their expectations about a pragmatic speaker's decisions. A pragmatic listener may be initialized with any kind of speaker, e.g. literal or pragmatic -- meaning the recursive reasoning can be modeled up to arbitrary depth.
\n", "bases": "Listener"}, {"fullname": "ultk.effcomm.agent.PragmaticListener.__init__", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticListener.__init__", "kind": "function", "doc": "Initialize the |E|-by-|M| matrix, R, corresponding to the pragmatic listener's conditional probability distribution over meanings given expressions.
\n\nThe pragmatic listener chooses meanings as their best guesses of the expression they heard according to:
\n\n$P(m | e) \\propto P_{\\text{PragmaticSpeaker}}(e | m)$
\n\nArguments: \n\n\nlanguage: the language with |M| meanings and |E| expressions defining the size of R. \nspeaker: a communicative agent storing a matrix S representing the conditional distribution over expressions given meanings. \nprior: a diagonal matrix of size |M|-by-|M| representing the communicative need probabilities for meanings. \n \n", "signature": "(\tlanguage : ultk . language . language . Language , \tspeaker : ultk . effcomm . agent . Speaker , \tprior : numpy . ndarray , \t** kwargs ) "}, {"fullname": "ultk.effcomm.agent.PragmaticListener.R", "modulename": "ultk.effcomm.agent", "qualname": "PragmaticListener.R", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, {"fullname": "ultk.effcomm.analysis", "modulename": "ultk.effcomm.analysis", "kind": "module", "doc": "Functions for analyzing and formatting the results of the simplicity/informativeness trade-off.
\n"}, {"fullname": "ultk.effcomm.analysis.get_dataframe", "modulename": "ultk.effcomm.analysis", "qualname": "get_dataframe", "kind": "function", "doc": "Get a pandas DataFrame for a list of languages containing efficient communication data.
\n\nArguments: \n\n\nlanguages: the list of languages to map into a dataframe. \ncolumns: the list of keys to a language's data
dictionary attribute, which will comprise the columns of the resulting dataframe. By default will use all items of each language's data
dictionary. \nsubset: the columns to subset for duplicates \nduplicates: {\"drop\", \"count\", \"leave\"} whether to drop, count, or do nothing with duplicates. By default is set to \"leave\" which will leave duplicates in the dataframe. \n \n\nReturns: \n\n\n \n data: a pandas DataFrame with rows as individual languages, with the columns specifying their data. \n \n \n", "signature": "(\tlanguages : list [ ultk . language . language . Language ] , \tcolumns : list [ str ] = None , \tsubset : list [ str ] = [ 'complexity' , 'comm_cost' ] , \tduplicates : str = 'leave' ) -> pandas . core . frame . DataFrame : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.analysis.pearson_analysis", "modulename": "ultk.effcomm.analysis", "qualname": "pearson_analysis", "kind": "function", "doc": "Measures pearson correlation coefficient for naturalness with a property.
\n\nUse nonparametric bootstrap for confidence intervals.
\n\nArguments: \n\n\ndata: a DataFrame representing the pool of measured languages \npredictor: a string representing the column to measure pearson r with \nproperty: a string representing a column to measure pearson r with the predictor column \nnum_bootstrap_samples: how many samples to bootstrap from the original data \n \n\nReturns: \n\n\n a dict of the pearson correlation coefficient for the predictor and the property, and bootstrapped confidence intervals for this coefficient, e.g.
\n\n{\n\"rho\": (a float between -1 and 1),\n\"confidence_intervals\": (a pandas Dataframe with the columns [\n 'bootstrap_sample_percent', 'low', 'high'\n])\n}\n
\n \n", "signature": "(\tdata , \tpredictor : str , \tproperty : str , \tnum_bootstrap_samples = 100 ) -> dict [ str , typing . Any ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.analysis.trade_off_means", "modulename": "ultk.effcomm.analysis", "qualname": "trade_off_means", "kind": "function", "doc": "Get a dataframe with the mean tradeoff data.
\n\nArguments: \n\n\nname: a str representing the subset of the population to observe mean properties for, e.g. \"natural\" or \"population\". \ndf: a pandas DataFrame containing data of a language population to take the means of. \nprperties: the properties to take means of, corresponding to columns of df
. \n \n\nExamples:
\n\n\n
>>> natural_means = trade_off_means ( "natural_means" , natural_data , properties ) \n>>> population_means = trade_off_means ( "population_means" , data , properties ) \n>>> means_df = pd . concat ([ natural_means , dlsav_means , population_means ]) . set_index ( "name" ) \n>>> means_df \n simplicity complexity informativity optimality \n name \n natural_means 0.772222 16.4000 0.746296 0.952280 \n population_means 0.681068 22.9631 0.525118 0.832010 \n
\n
\n", "signature": "(\tname : str , \tdf : pandas . core . frame . DataFrame , \tproperties : list ) -> pandas . core . frame . DataFrame : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.analysis.trade_off_ttest", "modulename": "ultk.effcomm.analysis", "qualname": "trade_off_ttest", "kind": "function", "doc": "Get a dataframe with a single-samples t-test results for a subpopulation against the full population.
\n\nThis is useful if we want to compare the optimality of natural languages to the full population of languages in an experiment. Because the property of 'being a natural language' is categorical, we use a single-samples T test.
\n\nArguments: \n\n\nsub_population: a pandas DataFrame representing a subset of the population to take ttests against the full language population for properties
. \npopulation_means: a dict containing properties as keys and the mean value of the full language population for that property. \nproperties: a list of strings corresponding to columns of the sub_population
DataFrame and keys of the population_means
dict. \n \n\nExamples: \n\n\n \n
>>> df = trade_off_ttest ( natural_data , population_means , properties ) \n>>> df \n simplicity complexity informativity optimality \n stat \n t-statistic 4.101937 -4.101937 3.126855 4.031027 \n Two-sided p-value 0.014830 0.014830 0.035292 0.015720 \n
\n
\n \n", "signature": "(\tsub_population : pandas . core . frame . DataFrame , \tpopulation_means : dict , \tproperties : list ) -> pandas . core . frame . DataFrame : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck", "modulename": "ultk.effcomm.information_bottleneck", "kind": "module", "doc": "Submodule for Information Bottleneck based analyses of the efficiency of semantic category systems.
\n\nThe ultk.effcomm.information_bottleneck.modeling
includes a friendly API for obtaining IB theoretical bounds and naming models given a specification of the statistics of the semantic domain. This is likely the only submodule you need to import.
\n\nThe ultk.effcomm.information_bottlneck.ib
implements the IB update equations, and includes an optimizer object that inherits from the base object in ba
.
\n\nThe ultk.effcomm.information_bottleneck.ba
submodule implements the Blahut-Arimoto algorithm for computing the theoretical bounds of efficient compression. It includes code for simulated annealing (reverse or not) of $\\beta$.
\n\nThe ultk.effcomm.information_bottleneck.tools
submodule includes helper methods for computing informational quantities and dealing with numerical instability.
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba", "modulename": "ultk.effcomm.information_bottleneck.ba", "kind": "module", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer", "kind": "class", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.__init__", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.__init__", "kind": "function", "doc": "Base initializer for a Blahut-Arimoto-based optimizer of the Rate Distortion function.
\n\nArguments: \n\n\nbetas: 1D array, values of beta to search \nmax_it: max number of iterations \nargs: propagated to self.beta_iterate
as *kwargs \neps: accuracy required by the algorithm: the algorithm stops if there is no change in distortion value of more than eps
between consecutive iterations \nignore_converge: whether to run the optimization until max_it
, ignoring the stopping criterion specified by eps
. \nxhat_size: the size of the output alphabet. The resulting encoders will be of shape (x, xhat) \nkwargs: propagated to self.beta_iterate
as **kwargs \n \n", "signature": "(\tbetas : numpy . ndarray , \t* args , \tmax_it : int = 1000 , \teps : float = 1e-15 , \tignore_converge : bool = False , \txhat_size = None , \t** kwargs ) "}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.betas", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.betas", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.max_it", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.max_it", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.eps", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.eps", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.ignore_converge", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.ignore_converge", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.init_args", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.init_args", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.init_kwargs", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.init_kwargs", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.ln_px", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.ln_px", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.ln_qxhat_x", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.ln_qxhat_x", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.dist_mat", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.dist_mat", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.xhat_size", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.xhat_size", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.result", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.result", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.results", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.results", "kind": "variable", "doc": "
\n", "annotation": ": list[typing.Any]"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.get_results", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.get_results", "kind": "function", "doc": "
\n", "signature": "(self ) -> list [ typing . Any ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.update_eqs", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.update_eqs", "kind": "function", "doc": "Main Blahut-Arimoto update steps.
\n", "signature": "(self , * args , ** kwargs ) -> None : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.next_result", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.next_result", "kind": "function", "doc": "Get the result of the converged BA iteration.
\n", "signature": "(self , beta , * args , ** kwargs ) -> None : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.beta_iterate", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.beta_iterate", "kind": "function", "doc": "Iterate the BA algorithm for an array of values of beta, using reverse deterministic annealing.
\n\nArguments: \n\n\nnum_restarts: number of times to restart each beta-optimization \nensure_monotonicity: whether to remove points that would make a rate distortion curve non-monotonic \nreverse_annealing: whether to use reverse annealing or regular annealing. If self.output_size < len(self.ln_px), then this is set to false. \n \n", "signature": "(\tself , \t* args , \tnum_restarts : int = 0 , \tensure_monotonicity : bool = True , \tdisable_tqdm : bool = False , \treverse_annealing : bool = True , \t** kwargs ) -> None : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.anneal", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.anneal", "kind": "function", "doc": "
\n", "signature": "(\tself , \t* args , \treverse : bool = True , \tnum_restarts : int = 0 , \tdisable_tqdm : bool = False , \t** kwargs ) -> list : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.blahut_arimoto", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.blahut_arimoto", "kind": "function", "doc": "Update the self-consistent equations for a Rate Distortion objective.
\n\nArguments: \n\n\nbeta: (scalar) the slope of the rate-distoriton function at the point where evaluation is required \n \n", "signature": "(self , beta , * args , ** kwargs ) -> None : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.compute_distortion", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.compute_distortion", "kind": "function", "doc": "Compute the expected distortion for the current p(x), q(xhat|x) and dist_mat.
\n", "signature": "(self , * args , ** kwargs ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer.compute_rate", "modulename": "ultk.effcomm.information_bottleneck.ba", "qualname": "BaseRDOptimizer.compute_rate", "kind": "function", "doc": "Compute the information rate for the current p(x), q(xhat|x).
\n", "signature": "(self , * args , ** kwargs ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ib", "modulename": "ultk.effcomm.information_bottleneck.ib", "kind": "module", "doc": "Information Bottleneck optimizer.
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.ib_kl", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "ib_kl", "kind": "function", "doc": "Compute the IB distortion matrix, the KL divergence between p(y|x) and q(y|xhat), in nats.
\n", "signature": "(py_x : numpy . ndarray , qy_xhat : numpy . ndarray ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBResult", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBResult", "kind": "class", "doc": "IBResult(qxhat_x, rate, distortion, accuracy, beta)
\n", "bases": "builtins.tuple"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBResult.__init__", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBResult.__init__", "kind": "function", "doc": "Create new instance of IBResult(qxhat_x, rate, distortion, accuracy, beta)
\n", "signature": "(qxhat_x , rate , distortion , accuracy , beta ) "}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBResult.qxhat_x", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBResult.qxhat_x", "kind": "variable", "doc": "Alias for field number 0
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBResult.rate", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBResult.rate", "kind": "variable", "doc": "Alias for field number 1
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBResult.distortion", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBResult.distortion", "kind": "variable", "doc": "Alias for field number 2
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBResult.accuracy", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBResult.accuracy", "kind": "variable", "doc": "Alias for field number 3
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBResult.beta", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBResult.beta", "kind": "variable", "doc": "Alias for field number 4
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.next_ln_qxhat", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "next_ln_qxhat", "kind": "function", "doc": "
\n", "signature": "(ln_px : numpy . ndarray , ln_qxhat_x : numpy . ndarray ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.next_ln_qxhat_x", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "next_ln_qxhat_x", "kind": "function", "doc": "
\n", "signature": "(ln_qxhat : numpy . ndarray , beta : float , dist_mat : numpy . ndarray ): ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.next_ln_qy_xhat", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "next_ln_qy_xhat", "kind": "function", "doc": "
\n", "signature": "(ln_pxy : numpy . ndarray , ln_qxhat_x : numpy . ndarray ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.next_ln_qx_xhat", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "next_ln_qx_xhat", "kind": "function", "doc": "
\n", "signature": "(ln_px : numpy . ndarray , ln_qxhat_x : numpy . ndarray ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer", "kind": "class", "doc": "
\n", "bases": "ultk.effcomm.information_bottleneck.ba.BaseRDOptimizer"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.__init__", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.__init__", "kind": "function", "doc": "Estimate the optimal encoder for a given value of beta
for the Information Bottleneck objective [Tishby et al., 1999]:
\n\n$\\min_{q} I[X:\\hat{X}] + \\beta \\mathbb{E}[D_{KL}[p(y|x) || p(y|\\hat{x})]].$
\n\nArguments: \n\n\npxy: 2D array of shape (|X|, |Y|)
representing the joint probability mass function of the source and relevance variables. \nbetas: 1D array of values of beta, where each beta is a float corresponding to the slope of the rate-distoriton function at the point where evaluation is required \n \n", "signature": "(pxy : numpy . ndarray , betas : numpy . ndarray , * args , ** kwargs ) "}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.ln_pxy", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.ln_pxy", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.ln_px", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.ln_px", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.px", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.px", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.ln_py_x", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.ln_py_x", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.results", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.results", "kind": "variable", "doc": "
\n", "annotation": ": list[ultk.effcomm.information_bottleneck.ib.IBResult]"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.get_results", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.get_results", "kind": "function", "doc": "
\n", "signature": "(self ) -> list [ ultk . effcomm . information_bottleneck . ib . IBResult ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.next_dist_mat", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.next_dist_mat", "kind": "function", "doc": "IB distortion matrix.
\n", "signature": "(self , * args , ** kwargs ) -> None : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.update_eqs", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.update_eqs", "kind": "function", "doc": "Iterate the IB update equations.
\n", "signature": "(self , beta , * args , ** kwargs ) -> None : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.compute_distortion", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.compute_distortion", "kind": "function", "doc": "Compute the expected distortion for the current p(x), q(xhat|x) and dist_mat.
\n", "signature": "(self , * args , ** kwargs ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.compute_accuracy", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.compute_accuracy", "kind": "function", "doc": "
\n", "signature": "(self , * args , ** kwargs ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.ib.IBOptimizer.next_result", "modulename": "ultk.effcomm.information_bottleneck.ib", "qualname": "IBOptimizer.next_result", "kind": "function", "doc": "Get the result of the converged BA iteration for the IB objective.
\n\nReturns: \n\n\n an IBResult namedtuple of (qxhat_x, rate, distortion, accuracy, beta)
values. This is:
\n\n`qxhat_x`, the optimal encoder, such that the\n\n`rate` (in bits) of compressing X into X_hat, is minimized for the level of\n\n`distortion` between X, X_hat with respect to Y, i.e. the\n\n`accuracy` I[X_hat:Y] is maximized, for the specified\n\n`beta` trade-off parameter\n
\n \n", "signature": "(\tself , \tbeta , \t* args , \t** kwargs ) -> ultk . effcomm . information_bottleneck . ib . IBResult : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling", "modulename": "ultk.effcomm.information_bottleneck.modeling", "kind": "module", "doc": "Re-implementation of the IBNamingModel at https://github.com/nogazs/ib-color-naming/blob/master/src/ib_naming_model.py .
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel", "kind": "class", "doc": "A model for simulating Information Bottleneck (IB) naming systems.
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.__init__", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.__init__", "kind": "function", "doc": "Initializes the IBNamingModel with given parameters.
\n\nArguments: \n\n\npM (np.ndarray): Prior distribution over meanings. Expected shape is (n, 1). \npU_M (np.ndarray): Conditional distribution of observations given meanings. \nbetas (np.ndarray): Array of beta values used for the IB curve. \nIB_curve (tuple[np.ndarray, np.ndarray]): tuple containing complexity and accuracy values along the IB curve. \nqW_M (np.ndarray): Initial encoder (naming system) matrix. \n \n", "signature": "(\tpM : numpy . ndarray , \tpU_M : numpy . ndarray , \tbetas : numpy . ndarray , \tIB_curve : tuple [ numpy . ndarray , numpy . ndarray ] , \tqW_M : numpy . ndarray ) "}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.pM", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.pM", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.pU_M", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.pU_M", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.I_MU", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.I_MU", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.betas", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.betas", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.IB_curve", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.IB_curve", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.qW_M", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.qW_M", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.qW_M_orig", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.qW_M_orig", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.F", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.F", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.m_hat", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.m_hat", "kind": "function", "doc": "Computes the optimal Bayesian listener corresponding to the encoder.
\n\nArguments: \n\n\nqW_M (np.ndarray): Encoder (naming system) matrix. \n \n\nReturns: \n\n\n np.ndarray: Optimal decoder that corresponds to the given encoder.
\n \n", "signature": "(self , qW_M : numpy . ndarray ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.complexity", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.complexity", "kind": "function", "doc": "Calculates the mutual information I(M;W) for a given encoder.
\n\nArguments: \n\n\npW_M (np.ndarray): Encoder (naming system) matrix. \n \n\nReturns: \n\n\n float: Mutual information I(M;W).
\n \n", "signature": "(self , pW_M : numpy . ndarray ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.accuracy", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.accuracy", "kind": "function", "doc": "Calculates the mutual information I(W;U) for a given encoder.
\n\nArguments: \n\n\npW_M (np.ndarray): Encoder (naming system) matrix. \n \n\nReturns: \n\n\n float: Mutual information I(W;U).
\n \n", "signature": "(self , pW_M : numpy . ndarray ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.d_IB", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.d_IB", "kind": "function", "doc": "Calculates the IB distortion for a given encoder, i.e. the KL divergence between speaker and listener meanings, $\n\\mathbb{E}\\left[D[m||\\hat{m}]\night] = I(M;U) - I(W;U)$.
\n\nArguments: \n\n\npW_M (np.ndarray): Encoder (naming system) matrix. \n \n\nReturns: \n\n\n float: Deviation from the optimal IB solution.
\n \n", "signature": "(self , pW_M : numpy . ndarray ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.fit", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.fit", "kind": "function", "doc": "Fits the naming system to the IB curve.
\n\nArguments: \n\n\npW_M (np.ndarray): Encoder (naming system) matrix. \n \n\nReturns: \n\n\n tuple containing:\n - epsilon (float): Deviation from optimality of pW_M.\n - gnid (float): Generalized normalized information distance (gNID) between qW_M and qW_M_fit.\n - bl (float): Fitted value of beta.\n - qW_M_fit (np.ndarray): Optimal IB system at bl.
\n \n", "signature": "(self , pW_M : numpy . ndarray ) -> tuple [ float , float , float , numpy . ndarray ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.save", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.save", "kind": "function", "doc": "Save as pickle binary.
\n", "signature": "(self , fn : str = 'ib_naming_model.pkl' ) -> None : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.IBNamingModel.from_pickle", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "IBNamingModel.from_pickle", "kind": "function", "doc": "
\n", "signature": "(cls , fn : str ): ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.gNID", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "gNID", "kind": "function", "doc": "Compute Generalized Normalized Informational Distance (gNID, in Zaslavsky et al. 2018, SI, Section 3.2) between two encoders. Code credit: https://github.com/nogazs/ib-color-naming/blob/master/src/tools.py#L94
\n\nArguments: \n\n\npW_X: first encoder of shape (|meanings|, |words|)
\npV_X: second encoder of shape (|meanings|, |words|)
\npX: prior over source variables of shape (|meanings|,)
\n \n", "signature": "(pW_X : numpy . ndarray , pV_X : numpy . ndarray , pX : numpy . ndarray ): ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.compute_bound", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "compute_bound", "kind": "function", "doc": "Computes the IB bound based on input distributions.
\n\nArguments: \n\n\npU_M (np.ndarray): Conditional distribution of observations given meanings. \npM (np.ndarray, optional): Prior distribution over meanings. Defaults to None. \nbetas (np.ndarray, optional): Range of beta values for the IB curve. Defaults to logspace(0, 10, 100). \n**kwargs: Additional parameters for the IB optimizer. \n \n\nReturns: \n\n\n list[IBResult]: List of results from the IB optimizer.
\n \n", "signature": "(\tpU_M : numpy . ndarray , \tpM : numpy . ndarray , \tbetas : numpy . ndarray = array ([ 1.00000000e+00 , 1.26185688e+00 , 1.59228279e+00 , 2.00923300e+00 , \n 2.53536449e+00 , 3.19926714e+00 , 4.03701726e+00 , 5.09413801e+00 , \n 6.42807312e+00 , 8.11130831e+00 , 1.02353102e+01 , 1.29154967e+01 , \n 1.62975083e+01 , 2.05651231e+01 , 2.59502421e+01 , 3.27454916e+01 , \n 4.13201240e+01 , 5.21400829e+01 , 6.57933225e+01 , 8.30217568e+01 , \n 1.04761575e+02 , 1.32194115e+02 , 1.66810054e+02 , 2.10490414e+02 , \n 2.65608778e+02 , 3.35160265e+02 , 4.22924287e+02 , 5.33669923e+02 , \n 6.73415066e+02 , 8.49753436e+02 , 1.07226722e+03 , 1.35304777e+03 , \n 1.70735265e+03 , 2.15443469e+03 , 2.71858824e+03 , 3.43046929e+03 , \n 4.32876128e+03 , 5.46227722e+03 , 6.89261210e+03 , 8.69749003e+03 , \n 1.09749877e+04 , 1.38488637e+04 , 1.74752840e+04 , 2.20513074e+04 , \n 2.78255940e+04 , 3.51119173e+04 , 4.43062146e+04 , 5.59081018e+04 , \n 7.05480231e+04 , 8.90215085e+04 , 1.12332403e+05 , 1.41747416e+05 , \n 1.78864953e+05 , 2.25701972e+05 , 2.84803587e+05 , 3.59381366e+05 , \n 4.53487851e+05 , 5.72236766e+05 , 7.22080902e+05 , 9.11162756e+05 , \n 1.14975700e+06 , 1.45082878e+06 , 1.83073828e+06 , 2.31012970e+06 , \n 2.91505306e+06 , 3.67837977e+06 , 4.64158883e+06 , 5.85702082e+06 , \n 7.39072203e+06 , 9.32603347e+06 , 1.17681195e+07 , 1.48496826e+07 , \n 1.87381742e+07 , 2.36448941e+07 , 2.98364724e+07 , 3.76493581e+07 , \n 4.75081016e+07 , 5.99484250e+07 , 7.56463328e+07 , 9.54548457e+07 , \n 1.20450354e+08 , 1.51991108e+08 , 1.91791026e+08 , 2.42012826e+08 , \n 3.05385551e+08 , 3.85352859e+08 , 4.86260158e+08 , 6.13590727e+08 , \n 7.74263683e+08 , 9.77009957e+08 , 1.23284674e+09 , 1.55567614e+09 , \n 1.96304065e+09 , 2.47707636e+09 , 3.12571585e+09 , 3.94420606e+09 , \n 4.97702356e+09 , 6.28029144e+09 , 7.92482898e+09 , 1.00000000e+10 ]) , \t** kwargs ) -> list [ ultk . effcomm . information_bottleneck . ib . IBResult ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.get_ib_naming_model", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "get_ib_naming_model", "kind": "function", "doc": "Constructs an IBNamingModel by constructing the IB bound for the domain distribution P(M,U).
\n\nArguments: \n\n\npU_M (np.ndarray): Conditional distribution of observations given meanings. \npM (np.ndarray, optional): Prior distribution over meanings. Defaults to None. \ngammas (np.ndarray, optional): Range of gamma values for similarity selection. Defaults to logspace(-2, 2, 1000). \n**bound_kwargs: Additional parameters for IB bound computation. See compute_bound
kwargs. \n \n\nReturns: \n\n\n IBNamingModel: An IBNamingModel instance configured with the computed IB bound.
\n \n", "signature": "(\tpU_M : numpy . ndarray , \tpM : numpy . ndarray = None , \t** bound_kwargs ) -> ultk . effcomm . information_bottleneck . modeling . IBNamingModel : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.encoder_to_language", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "encoder_to_language", "kind": "function", "doc": "Convert a stochastic encoder to a ULTK Language using an IBNamingModel bayesian decoder.
\n\nArguments: \n\n\nqW_M (np.ndarray): A stochastic matrix where rows correspond to meanings\nand columns correspond to words, defining the encoder. \nnaming_model (IBNamingModel): An instance of the IBNamingModel used to \ndecode the encoder into a language. \nuniverse (Universe): The universe containing referents and the structure \nin which the meanings are defined. \nwords (list[str], optional): A list of word forms to use. If None, default \nnumeric indices are used. Defaults to None. \nname (str, optional): The name of the resulting Language. Defaults to None. \nnatural (bool, optional): Whether the resulting Language is a natural \nlanguage. Defaults to False. \n \n\nReturns: \n\n\n Language: The constructed Language object, where each expression maps a \n word form to its corresponding meaning.
\n \n", "signature": "(\tqW_M : numpy . ndarray , \tnaming_model : ultk . effcomm . information_bottleneck . modeling . IBNamingModel , \tuniverse : ultk . language . semantics . Universe , \twords : list [ str ] = None , \tname : str = None , \tnatural : bool = False ) -> ultk . language . language . Language : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.pU_M_from_similarity", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "pU_M_from_similarity", "kind": "function", "doc": "Computes the conditional distribution p(U|M) based on similarity.
\n\nArguments: \n\n\ngamma (float): Scaling factor for the similarity matrix. \nsim_mat (np.ndarray): Similarity matrix representing similarity between meanings (M) and referents (U). \n \n\nReturns: \n\n\n np.ndarray: Conditional distribution p(U|M).
\n \n", "signature": "(gamma : float , sim_mat : numpy . ndarray ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.get_imu", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "get_imu", "kind": "function", "doc": "Calculates the mutual information I(M;U) for a distribution p(U|M) \u221d exp(gamma * sim(u, m)).
\n\nArguments: \n\n\ngamma (float): Scaling factor for the similarity matrix. \nsim_mat (np.ndarray): Similarity matrix representing similarity between meanings (M) and referents (U). \npM (np.ndarray, optional): Prior distribution over meanings (M). Defaults to a uniform distribution. \n \n\nReturns: \n\n\n np.ndarray: Mutual information I(M;U).
\n \n", "signature": "(\tgamma : float , \tsim_mat : numpy . ndarray , \tpM : numpy . ndarray = None ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.modeling.select_gamma", "modulename": "ultk.effcomm.information_bottleneck.modeling", "qualname": "select_gamma", "kind": "function", "doc": "Selects the gamma value that corresponds to the midpoint of I(M;U) for a distribution p(U|M) \u221d exp(gamma * sim(u, m)).
\n\nArguments: \n\n\nsimilarity_matrix (np.ndarray): Matrix encoding pairwise similarities between meanings (M) and referents (U). \npM (np.ndarray, optional): Communicative need distribution over meanings (M). Defaults to None. \ngammas (np.ndarray, optional): Range of gamma values to sample. Defaults to logspace(-2, 2, 1000). \n \n\nReturns: \n\n\n tuple: A tuple containing:\n - float: Gamma value corresponding to the midpoint of I(M;U).\n - float: Midpoint of I(M;U).\n - int: Index of the midpoint in the gamma array.\n - np.ndarray: Array of gamma values used.\n - np.ndarray: Array of computed I(M;U) values.
\n \n", "signature": "(\tsimilarity_matrix : numpy . ndarray , \tpM : numpy . ndarray = None , \tgammas : numpy . ndarray = array ([ 1.00000000e-02 , 1.00926219e-02 , 1.01861017e-02 , 1.02804473e-02 , \n 1.03756668e-02 , 1.04717682e-02 , 1.05687597e-02 , 1.06666496e-02 , \n 1.07654461e-02 , 1.08651577e-02 , 1.09657929e-02 , 1.10673602e-02 , \n 1.11698682e-02 , 1.12733256e-02 , 1.13777413e-02 , 1.14831241e-02 , \n 1.15894830e-02 , 1.16968270e-02 , 1.18051653e-02 , 1.19145070e-02 , \n 1.20248614e-02 , 1.21362380e-02 , 1.22486461e-02 , 1.23620954e-02 , \n 1.24765955e-02 , 1.25921561e-02 , 1.27087871e-02 , 1.28264983e-02 , \n 1.29452998e-02 , 1.30652016e-02 , 1.31862140e-02 , 1.33083472e-02 , \n 1.34316117e-02 , 1.35560179e-02 , 1.36815763e-02 , 1.38082977e-02 , \n 1.39361927e-02 , 1.40652724e-02 , 1.41955477e-02 , 1.43270295e-02 , \n 1.44597292e-02 , 1.45936580e-02 , 1.47288272e-02 , 1.48652484e-02 , \n 1.50029332e-02 , 1.51418933e-02 , 1.52821404e-02 , 1.54236865e-02 , \n 1.55665436e-02 , 1.57107239e-02 , 1.58562396e-02 , 1.60031031e-02 , \n 1.61513269e-02 , 1.63009236e-02 , 1.64519059e-02 , 1.66042866e-02 , \n 1.67580786e-02 , 1.69132952e-02 , 1.70699493e-02 , 1.72280545e-02 , \n 1.73876240e-02 , 1.75486715e-02 , 1.77112106e-02 , 1.78752553e-02 , \n 1.80408193e-02 , 1.82079168e-02 , 1.83765620e-02 , 1.85467692e-02 , \n 1.87185529e-02 , 1.88919278e-02 , 1.90669084e-02 , 1.92435098e-02 , \n 1.94217468e-02 , 1.96016347e-02 , 1.97831888e-02 , 1.99664245e-02 , \n 2.01513573e-02 , 2.03380031e-02 , 2.05263775e-02 , 2.07164968e-02 , \n 2.09083769e-02 , 2.11020343e-02 , 2.12974854e-02 , 2.14947467e-02 , \n 2.16938352e-02 , 2.18947676e-02 , 2.20975611e-02 , 2.23022330e-02 , \n 2.25088005e-02 , 2.27172813e-02 , 2.29276931e-02 , 2.31400538e-02 , \n 2.33543814e-02 , 2.35706941e-02 , 2.37890104e-02 , 2.40093488e-02 , \n 2.42317279e-02 , 2.44561668e-02 , 2.46826845e-02 , 2.49113003e-02 , \n 2.51420335e-02 , 2.53749038e-02 , 2.56099310e-02 , 2.58471351e-02 , \n 2.60865362e-02 , 2.63281547e-02 , 2.65720111e-02 , 2.68181261e-02 , \n 2.70665207e-02 , 2.73172160e-02 , 2.75702333e-02 , 2.78255940e-02 , \n 2.80833200e-02 , 2.83434331e-02 , 2.86059554e-02 , 2.88709092e-02 , \n 2.91383170e-02 , 2.94082017e-02 , 2.96805861e-02 , 2.99554933e-02 , \n 3.02329468e-02 , 3.05129702e-02 , 3.07955871e-02 , 3.10808217e-02 , \n 3.13686982e-02 , 3.16592411e-02 , 3.19524751e-02 , 3.22484250e-02 , \n 3.25471161e-02 , 3.28485737e-02 , 3.31528234e-02 , 3.34598912e-02 , \n 3.37698031e-02 , 3.40825855e-02 , 3.43982649e-02 , 3.47168682e-02 , \n 3.50384225e-02 , 3.53629550e-02 , 3.56904935e-02 , 3.60210656e-02 , \n 3.63546996e-02 , 3.66914238e-02 , 3.70312668e-02 , 3.73742574e-02 , \n 3.77204249e-02 , 3.80697987e-02 , 3.84224085e-02 , 3.87782841e-02 , \n 3.91374560e-02 , 3.94999546e-02 , 3.98658107e-02 , 4.02350555e-02 , \n 4.06077203e-02 , 4.09838367e-02 , 4.13634368e-02 , 4.17465529e-02 , \n 4.21332174e-02 , 4.25234633e-02 , 4.29173238e-02 , 4.33148322e-02 , \n 4.37160225e-02 , 4.41209286e-02 , 4.45295851e-02 , 4.49420266e-02 , \n 4.53582883e-02 , 4.57784054e-02 , 4.62024137e-02 , 4.66303493e-02 , \n 4.70622485e-02 , 4.74981480e-02 , 4.79380850e-02 , 4.83820966e-02 , \n 4.88302209e-02 , 4.92824957e-02 , 4.97389596e-02 , 5.01996513e-02 , \n 5.06646101e-02 , 5.11338754e-02 , 5.16074871e-02 , 5.20854855e-02 , \n 5.25679112e-02 , 5.30548053e-02 , 5.35462090e-02 , 5.40421642e-02 , \n 5.45427131e-02 , 5.50478981e-02 , 5.55577622e-02 , 5.60723488e-02 , \n 5.65917016e-02 , 5.71158648e-02 , 5.76448828e-02 , 5.81788007e-02 , \n 5.87176639e-02 , 5.92615181e-02 , 5.98104096e-02 , 6.03643851e-02 , \n 6.09234915e-02 , 6.14877765e-02 , 6.20572881e-02 , 6.26320745e-02 , \n 6.32121848e-02 , 6.37976681e-02 , 6.43885743e-02 , 6.49849535e-02 , \n 6.55868566e-02 , 6.61943346e-02 , 6.68074392e-02 , 6.74262224e-02 , \n 6.80507370e-02 , 6.86810359e-02 , 6.93171728e-02 , 6.99592017e-02 , \n 7.06071771e-02 , 7.12611543e-02 , 7.19211887e-02 , 7.25873365e-02 , \n 7.32596543e-02 , 7.39381992e-02 , 7.46230289e-02 , 7.53142017e-02 , \n 7.60117762e-02 , 7.67158118e-02 , 7.74263683e-02 , 7.81435061e-02 , \n 7.88672862e-02 , 7.95977700e-02 , 8.03350198e-02 , 8.10790981e-02 , \n 8.18300682e-02 , 8.25879939e-02 , 8.33529397e-02 , 8.41249705e-02 , \n 8.49041520e-02 , 8.56905505e-02 , 8.64842328e-02 , 8.72852662e-02 , \n 8.80937190e-02 , 8.89096599e-02 , 8.97331581e-02 , 9.05642838e-02 , \n 9.14031075e-02 , 9.22497005e-02 , 9.31041349e-02 , 9.39664831e-02 , \n 9.48368187e-02 , 9.57152154e-02 , 9.66017480e-02 , 9.74964918e-02 , \n 9.83995230e-02 , 9.93109181e-02 , 1.00230755e-01 , 1.01159111e-01 , \n 1.02096066e-01 , 1.03041699e-01 , 1.03996091e-01 , 1.04959323e-01 , \n 1.05931476e-01 , 1.06912634e-01 , 1.07902879e-01 , 1.08902296e-01 , \n 1.09910970e-01 , 1.10928986e-01 , 1.11956432e-01 , 1.12993394e-01 , \n 1.14039960e-01 , 1.15096220e-01 , 1.16162263e-01 , 1.17238180e-01 , \n 1.18324063e-01 , 1.19420003e-01 , 1.20526094e-01 , 1.21642429e-01 , \n 1.22769105e-01 , 1.23906216e-01 , 1.25053859e-01 , 1.26212131e-01 , \n 1.27381132e-01 , 1.28560961e-01 , 1.29751717e-01 , 1.30953502e-01 , \n 1.32166418e-01 , 1.33390569e-01 , 1.34626058e-01 , 1.35872990e-01 , \n 1.37131472e-01 , 1.38401610e-01 , 1.39683512e-01 , 1.40977287e-01 , \n 1.42283046e-01 , 1.43600898e-01 , 1.44930957e-01 , 1.46273336e-01 , \n 1.47628147e-01 , 1.48995507e-01 , 1.50375532e-01 , 1.51768339e-01 , \n 1.53174046e-01 , 1.54592774e-01 , 1.56024641e-01 , 1.57469771e-01 , \n 1.58928287e-01 , 1.60400311e-01 , 1.61885969e-01 , 1.63385388e-01 , \n 1.64898694e-01 , 1.66426018e-01 , 1.67967487e-01 , 1.69523234e-01 , \n 1.71093391e-01 , 1.72678090e-01 , 1.74277468e-01 , 1.75891659e-01 , \n 1.77520801e-01 , 1.79165033e-01 , 1.80824493e-01 , 1.82499324e-01 , \n 1.84189668e-01 , 1.85895668e-01 , 1.87617469e-01 , 1.89355218e-01 , \n 1.91109062e-01 , 1.92879151e-01 , 1.94665634e-01 , 1.96468665e-01 , \n 1.98288395e-01 , 2.00124980e-01 , 2.01978576e-01 , 2.03849340e-01 , \n 2.05737431e-01 , 2.07643011e-01 , 2.09566240e-01 , 2.11507282e-01 , \n 2.13466303e-01 , 2.15443469e-01 , 2.17438948e-01 , 2.19452909e-01 , \n 2.21485523e-01 , 2.23536965e-01 , 2.25607407e-01 , 2.27697026e-01 , \n 2.29805999e-01 , 2.31934506e-01 , 2.34082728e-01 , 2.36250847e-01 , \n 2.38439047e-01 , 2.40647515e-01 , 2.42876438e-01 , 2.45126006e-01 , \n 2.47396410e-01 , 2.49687843e-01 , 2.52000499e-01 , 2.54334576e-01 , \n 2.56690272e-01 , 2.59067786e-01 , 2.61467321e-01 , 2.63889081e-01 , \n 2.66333273e-01 , 2.68800102e-01 , 2.71289780e-01 , 2.73802518e-01 , \n 2.76338529e-01 , 2.78898029e-01 , 2.81481236e-01 , 2.84088369e-01 , \n 2.86719650e-01 , 2.89375302e-01 , 2.92055551e-01 , 2.94760626e-01 , \n 2.97490755e-01 , 3.00246171e-01 , 3.03027108e-01 , 3.05833803e-01 , \n 3.08666494e-01 , 3.11525422e-01 , 3.14410830e-01 , 3.17322963e-01 , \n 3.20262069e-01 , 3.23228398e-01 , 3.26222201e-01 , 3.29243733e-01 , \n 3.32293252e-01 , 3.35371015e-01 , 3.38477286e-01 , 3.41612327e-01 , \n 3.44776405e-01 , 3.47969790e-01 , 3.51192753e-01 , 3.54445567e-01 , \n 3.57728510e-01 , 3.61041860e-01 , 3.64385898e-01 , 3.67760910e-01 , \n 3.71167182e-01 , 3.74605003e-01 , 3.78074666e-01 , 3.81576466e-01 , \n 3.85110700e-01 , 3.88677669e-01 , 3.92277676e-01 , 3.95911027e-01 , \n 3.99578030e-01 , 4.03278998e-01 , 4.07014245e-01 , 4.10784089e-01 , \n 4.14588850e-01 , 4.18428851e-01 , 4.22304419e-01 , 4.26215883e-01 , \n 4.30163576e-01 , 4.34147833e-01 , 4.38168993e-01 , 4.42227398e-01 , \n 4.46323393e-01 , 4.50457325e-01 , 4.54629547e-01 , 4.58840413e-01 , \n 4.63090280e-01 , 4.67379511e-01 , 4.71708469e-01 , 4.76077523e-01 , \n 4.80487044e-01 , 4.84937407e-01 , 4.89428990e-01 , 4.93962174e-01 , \n 4.98537346e-01 , 5.03154895e-01 , 5.07815211e-01 , 5.12518693e-01 , \n 5.17265739e-01 , 5.22056753e-01 , 5.26892142e-01 , 5.31772318e-01 , \n 5.36697695e-01 , 5.41668691e-01 , 5.46685730e-01 , 5.51749238e-01 , \n 5.56859644e-01 , 5.62017385e-01 , 5.67222897e-01 , 5.72476624e-01 , \n 5.77779012e-01 , 5.83130511e-01 , 5.88531578e-01 , 5.93982669e-01 , \n 5.99484250e-01 , 6.05036788e-01 , 6.10640754e-01 , 6.16296626e-01 , \n 6.22004883e-01 , 6.27766011e-01 , 6.33580499e-01 , 6.39448843e-01 , \n 6.45371540e-01 , 6.51349095e-01 , 6.57382014e-01 , 6.63470812e-01 , \n 6.69616005e-01 , 6.75818117e-01 , 6.82077673e-01 , 6.88395207e-01 , \n 6.94771255e-01 , 7.01206359e-01 , 7.07701066e-01 , 7.14255929e-01 , \n 7.20871503e-01 , 7.27548353e-01 , 7.34287045e-01 , 7.41088152e-01 , \n 7.47952252e-01 , 7.54879928e-01 , 7.61871770e-01 , 7.68928372e-01 , \n 7.76050334e-01 , 7.83238260e-01 , 7.90492762e-01 , 7.97814457e-01 , \n 8.05203967e-01 , 8.12661920e-01 , 8.20188950e-01 , 8.27785697e-01 , \n 8.35452806e-01 , 8.43190929e-01 , 8.51000725e-01 , 8.58882856e-01 , \n 8.66837993e-01 , 8.74866812e-01 , 8.82969996e-01 , 8.91148232e-01 , \n 8.99402217e-01 , 9.07732653e-01 , 9.16140246e-01 , 9.24625712e-01 , \n 9.33189772e-01 , 9.41833153e-01 , 9.50556592e-01 , 9.59360829e-01 , \n 9.68246612e-01 , 9.77214697e-01 , 9.86265846e-01 , 9.95400829e-01 , \n 1.00462042e+00 , 1.01392541e+00 , 1.02331658e+00 , 1.03279473e+00 , \n 1.04236067e+00 , 1.05201522e+00 , 1.06175918e+00 , 1.07159340e+00 , \n 1.08151870e+00 , 1.09153594e+00 , 1.10164595e+00 , 1.11184960e+00 , \n 1.12214777e+00 , 1.13254132e+00 , 1.14303113e+00 , 1.15361810e+00 , \n 1.16430313e+00 , 1.17508713e+00 , 1.18597101e+00 , 1.19695570e+00 , \n 1.20804213e+00 , 1.21923125e+00 , 1.23052400e+00 , 1.24192135e+00 , \n 1.25342427e+00 , 1.26503372e+00 , 1.27675070e+00 , 1.28857621e+00 , \n 1.30051125e+00 , 1.31255684e+00 , 1.32471399e+00 , 1.33698374e+00 , \n 1.34936714e+00 , 1.36186524e+00 , 1.37447909e+00 , 1.38720978e+00 , \n 1.40005838e+00 , 1.41302599e+00 , 1.42611371e+00 , 1.43932264e+00 , \n 1.45265393e+00 , 1.46610868e+00 , 1.47968806e+00 , 1.49339322e+00 , \n 1.50722531e+00 , 1.52118552e+00 , 1.53527503e+00 , 1.54949504e+00 , \n 1.56384676e+00 , 1.57833141e+00 , 1.59295021e+00 , 1.60770442e+00 , \n 1.62259529e+00 , 1.63762407e+00 , 1.65279206e+00 , 1.66810054e+00 , \n 1.68355080e+00 , 1.69914417e+00 , 1.71488197e+00 , 1.73076553e+00 , \n 1.74679622e+00 , 1.76297538e+00 , 1.77930439e+00 , 1.79578465e+00 , \n 1.81241755e+00 , 1.82920450e+00 , 1.84614695e+00 , 1.86324631e+00 , \n 1.88050406e+00 , 1.89792164e+00 , 1.91550056e+00 , 1.93324229e+00 , \n 1.95114835e+00 , 1.96922026e+00 , 1.98745955e+00 , 2.00586778e+00 , \n 2.02444651e+00 , 2.04319732e+00 , 2.06212180e+00 , 2.08122157e+00 , \n 2.10049824e+00 , 2.11995346e+00 , 2.13958887e+00 , 2.15940615e+00 , \n 2.17940698e+00 , 2.19959307e+00 , 2.21996612e+00 , 2.24052787e+00 , \n 2.26128007e+00 , 2.28222447e+00 , 2.30336287e+00 , 2.32469706e+00 , \n 2.34622885e+00 , 2.36796007e+00 , 2.38989257e+00 , 2.41202821e+00 , \n 2.43436887e+00 , 2.45691646e+00 , 2.47967289e+00 , 2.50264010e+00 , \n 2.52582003e+00 , 2.54921465e+00 , 2.57282597e+00 , 2.59665597e+00 , \n 2.62070670e+00 , 2.64498018e+00 , 2.66947849e+00 , 2.69420371e+00 , \n 2.71915794e+00 , 2.74434330e+00 , 2.76976194e+00 , 2.79541600e+00 , \n 2.82130768e+00 , 2.84743917e+00 , 2.87381269e+00 , 2.90043049e+00 , \n 2.92729484e+00 , 2.95440800e+00 , 2.98177229e+00 , 3.00939003e+00 , \n 3.03726358e+00 , 3.06539530e+00 , 3.09378757e+00 , 3.12244282e+00 , \n 3.15136348e+00 , 3.18055202e+00 , 3.21001090e+00 , 3.23974263e+00 , \n 3.26974974e+00 , 3.30003479e+00 , 3.33060034e+00 , 3.36144900e+00 , \n 3.39258338e+00 , 3.42400614e+00 , 3.45571994e+00 , 3.48772747e+00 , \n 3.52003147e+00 , 3.55263468e+00 , 3.58553986e+00 , 3.61874981e+00 , \n 3.65226736e+00 , 3.68609536e+00 , 3.72023668e+00 , 3.75469422e+00 , \n 3.78947092e+00 , 3.82456972e+00 , 3.85999362e+00 , 3.89574562e+00 , \n 3.93182876e+00 , 3.96824610e+00 , 4.00500076e+00 , 4.04209584e+00 , \n 4.07953450e+00 , 4.11731993e+00 , 4.15545533e+00 , 4.19394396e+00 , \n 4.23278907e+00 , 4.27199397e+00 , 4.31156199e+00 , 4.35149650e+00 , \n 4.39180089e+00 , 4.43247859e+00 , 4.47353305e+00 , 4.51496777e+00 , \n 4.55678627e+00 , 4.59899209e+00 , 4.64158883e+00 , 4.68458012e+00 , \n 4.72796959e+00 , 4.77176095e+00 , 4.81595791e+00 , 4.86056423e+00 , \n 4.90558371e+00 , 4.95102016e+00 , 4.99687745e+00 , 5.04315949e+00 , \n 5.08987019e+00 , 5.13701354e+00 , 5.18459354e+00 , 5.23261424e+00 , \n 5.28107971e+00 , 5.32999408e+00 , 5.37936150e+00 , 5.42918618e+00 , \n 5.47947234e+00 , 5.53022426e+00 , 5.58144625e+00 , 5.63314267e+00 , \n 5.68531791e+00 , 5.73797641e+00 , 5.79112265e+00 , 5.84476113e+00 , \n 5.89889643e+00 , 5.95353313e+00 , 6.00867589e+00 , 6.06432940e+00 , \n 6.12049837e+00 , 6.17718760e+00 , 6.23440189e+00 , 6.29214611e+00 , \n 6.35042517e+00 , 6.40924402e+00 , 6.46860766e+00 , 6.52852114e+00 , \n 6.58898955e+00 , 6.65001803e+00 , 6.71161177e+00 , 6.77377600e+00 , \n 6.83651600e+00 , 6.89983712e+00 , 6.96374473e+00 , 7.02824426e+00 , \n 7.09334120e+00 , 7.15904109e+00 , 7.22534949e+00 , 7.29227206e+00 , \n 7.35981448e+00 , 7.42798248e+00 , 7.49678187e+00 , 7.56621850e+00 , \n 7.63629826e+00 , 7.70702711e+00 , 7.77841107e+00 , 7.85045620e+00 , \n 7.92316862e+00 , 7.99655453e+00 , 8.07062014e+00 , 8.14537177e+00 , \n 8.22081576e+00 , 8.29695852e+00 , 8.37380654e+00 , 8.45136633e+00 , \n 8.52964450e+00 , 8.60864770e+00 , 8.68838264e+00 , 8.76885609e+00 , \n 8.85007491e+00 , 8.93204600e+00 , 9.01477631e+00 , 9.09827289e+00 , \n 9.18254284e+00 , 9.26759330e+00 , 9.35343152e+00 , 9.44006479e+00 , \n 9.52750047e+00 , 9.61574600e+00 , 9.70480888e+00 , 9.79469667e+00 , \n 9.88541702e+00 , 9.97697764e+00 , 1.00693863e+01 , 1.01626509e+01 , \n 1.02567793e+01 , 1.03517796e+01 , 1.04476597e+01 , 1.05444279e+01 , \n 1.06420924e+01 , 1.07406615e+01 , 1.08401436e+01 , 1.09405471e+01 , \n 1.10418805e+01 , 1.11441525e+01 , 1.12473718e+01 , 1.13515471e+01 , \n 1.14566873e+01 , 1.15628013e+01 , 1.16698982e+01 , 1.17779870e+01 , \n 1.18870770e+01 , 1.19971774e+01 , 1.21082975e+01 , 1.22204469e+01 , \n 1.23336350e+01 , 1.24478715e+01 , 1.25631660e+01 , 1.26795285e+01 , \n 1.27969687e+01 , 1.29154967e+01 , 1.30351224e+01 , 1.31558562e+01 , \n 1.32777083e+01 , 1.34006890e+01 , 1.35248087e+01 , 1.36500781e+01 , \n 1.37765077e+01 , 1.39041083e+01 , 1.40328908e+01 , 1.41628662e+01 , \n 1.42940453e+01 , 1.44264395e+01 , 1.45600600e+01 , 1.46949180e+01 , \n 1.48310251e+01 , 1.49683929e+01 , 1.51070330e+01 , 1.52469573e+01 , \n 1.53881775e+01 , 1.55307057e+01 , 1.56745541e+01 , 1.58197348e+01 , \n 1.59662602e+01 , 1.61141428e+01 , 1.62633950e+01 , 1.64140297e+01 , \n 1.65660596e+01 , 1.67194976e+01 , 1.68743568e+01 , 1.70306503e+01 , \n 1.71883914e+01 , 1.73475936e+01 , 1.75082703e+01 , 1.76704353e+01 , \n 1.78341022e+01 , 1.79992851e+01 , 1.81659979e+01 , 1.83342548e+01 , \n 1.85040702e+01 , 1.86754584e+01 , 1.88484341e+01 , 1.90230119e+01 , \n 1.91992067e+01 , 1.93770334e+01 , 1.95565072e+01 , 1.97376433e+01 , \n 1.99204571e+01 , 2.01049642e+01 , 2.02911802e+01 , 2.04791210e+01 , \n 2.06688025e+01 , 2.08602409e+01 , 2.10534524e+01 , 2.12484535e+01 , \n 2.14452608e+01 , 2.16438909e+01 , 2.18443607e+01 , 2.20466874e+01 , \n 2.22508880e+01 , 2.24569800e+01 , 2.26649808e+01 , 2.28749082e+01 , \n 2.30867799e+01 , 2.33006141e+01 , 2.35164288e+01 , 2.37342425e+01 , \n 2.39540736e+01 , 2.41759408e+01 , 2.43998630e+01 , 2.46258592e+01 , \n 2.48539486e+01 , 2.50841506e+01 , 2.53164848e+01 , 2.55509709e+01 , \n 2.57876289e+01 , 2.60264788e+01 , 2.62675410e+01 , 2.65108360e+01 , \n 2.67563844e+01 , 2.70042072e+01 , 2.72543253e+01 , 2.75067601e+01 , \n 2.77615329e+01 , 2.80186656e+01 , 2.82781798e+01 , 2.85400977e+01 , \n 2.88044415e+01 , 2.90712338e+01 , 2.93404971e+01 , 2.96122544e+01 , \n 2.98865287e+01 , 3.01633435e+01 , 3.04427221e+01 , 3.07246884e+01 , \n 3.10092664e+01 , 3.12964801e+01 , 3.15863541e+01 , 3.18789129e+01 , \n 3.21741815e+01 , 3.24721849e+01 , 3.27729485e+01 , 3.30764978e+01 , \n 3.33828586e+01 , 3.36920571e+01 , 3.40041193e+01 , 3.43190720e+01 , \n 3.46369418e+01 , 3.49577557e+01 , 3.52815412e+01 , 3.56083255e+01 , \n 3.59381366e+01 , 3.62710025e+01 , 3.66069515e+01 , 3.69460121e+01 , \n 3.72882131e+01 , 3.76335836e+01 , 3.79821531e+01 , 3.83339510e+01 , \n 3.86890074e+01 , 3.90473524e+01 , 3.94090164e+01 , 3.97740302e+01 , \n 4.01424249e+01 , 4.05142317e+01 , 4.08894823e+01 , 4.12682085e+01 , \n 4.16504425e+01 , 4.20362168e+01 , 4.24255643e+01 , 4.28185180e+01 , \n 4.32151113e+01 , 4.36153779e+01 , 4.40193519e+01 , 4.44270675e+01 , \n 4.48385595e+01 , 4.52538628e+01 , 4.56730127e+01 , 4.60960449e+01 , \n 4.65229952e+01 , 4.69539001e+01 , 4.73887961e+01 , 4.78277202e+01 , \n 4.82707097e+01 , 4.87178022e+01 , 4.91690358e+01 , 4.96244488e+01 , \n 5.00840799e+01 , 5.05479682e+01 , 5.10161531e+01 , 5.14886745e+01 , \n 5.19655724e+01 , 5.24468875e+01 , 5.29326606e+01 , 5.34229330e+01 , \n 5.39177464e+01 , 5.44171429e+01 , 5.49211648e+01 , 5.54298552e+01 , \n 5.59432571e+01 , 5.64614142e+01 , 5.69843706e+01 , 5.75121707e+01 , \n 5.80448594e+01 , 5.85824820e+01 , 5.91250841e+01 , 5.96727120e+01 , \n 6.02254120e+01 , 6.07832313e+01 , 6.13462172e+01 , 6.19144176e+01 , \n 6.24878807e+01 , 6.30666554e+01 , 6.36507908e+01 , 6.42403366e+01 , \n 6.48353429e+01 , 6.54358602e+01 , 6.60419396e+01 , 6.66536327e+01 , \n 6.72709914e+01 , 6.78940681e+01 , 6.85229160e+01 , 6.91575883e+01 , \n 6.97981391e+01 , 7.04446228e+01 , 7.10970943e+01 , 7.17556092e+01 , \n 7.24202233e+01 , 7.30909933e+01 , 7.37679760e+01 , 7.44512291e+01 , \n 7.51408106e+01 , 7.58367791e+01 , 7.65391939e+01 , 7.72481145e+01 , \n 7.79636013e+01 , 7.86857151e+01 , 7.94145172e+01 , 8.01500696e+01 , \n 8.08924349e+01 , 8.16416760e+01 , 8.23978568e+01 , 8.31610415e+01 , \n 8.39312950e+01 , 8.47086827e+01 , 8.54932707e+01 , 8.62851257e+01 , \n 8.70843150e+01 , 8.78909065e+01 , 8.87049689e+01 , 8.95265713e+01 , \n 9.03557835e+01 , 9.11926760e+01 , 9.20373200e+01 , 9.28897872e+01 , \n 9.37501502e+01 , 9.46184819e+01 , 9.54948564e+01 , 9.63793480e+01 , \n 9.72720319e+01 , 9.81729841e+01 , 9.90822810e+01 , 1.00000000e+02 ]) ) -> tuple [ float , float , int , numpy . ndarray , numpy . ndarray ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.tools", "modulename": "ultk.effcomm.information_bottleneck.tools", "kind": "module", "doc": "
\n"}, {"fullname": "ultk.effcomm.information_bottleneck.tools.PRECISION", "modulename": "ultk.effcomm.information_bottleneck.tools", "qualname": "PRECISION", "kind": "variable", "doc": "
\n", "default_value": "1e-15"}, {"fullname": "ultk.effcomm.information_bottleneck.tools.get_gaussian_noise", "modulename": "ultk.effcomm.information_bottleneck.tools", "qualname": "get_gaussian_noise", "kind": "function", "doc": "Small Gaussian noise.
\n", "signature": "(shape ): ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.tools.add_noise_to_stochastic_matrix", "modulename": "ultk.effcomm.information_bottleneck.tools", "qualname": "add_noise_to_stochastic_matrix", "kind": "function", "doc": "Given an input stochastic matrix q
, sample a stochastic matrix p
and\nmix it with the input with a small weight weight
, i.e., return q + weight * p.
\n", "signature": "(q , weight = 0.01 ): ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.tools.random_stochastic_matrix", "modulename": "ultk.effcomm.information_bottleneck.tools", "qualname": "random_stochastic_matrix", "kind": "function", "doc": "Initialize a stochastic matrix (2D array) that sums to 1 along the rows.
\n\nArguments: \n\n\nshape: tuple, the desired shape of the stochastic matrix (e.g., (rows, cols)
). \ngamma: float, scaling factor for the random normal initialization. \n \n\nReturns: \n\n\n A stochastic matrix with rows summing to 1.
\n \n", "signature": "(shape , gamma = 1e-10 ): ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.tools.entropy_bits", "modulename": "ultk.effcomm.information_bottleneck.tools", "qualname": "entropy_bits", "kind": "function", "doc": "Compute entropy of p, $H(X) = - \\sum_x p(x) \\log p(x)$, in bits.
\n", "signature": "(p : numpy . ndarray , axis = None ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.tools.mutual_info", "modulename": "ultk.effcomm.information_bottleneck.tools", "qualname": "mutual_info", "kind": "function", "doc": "Compute mutual information, $I(X;Y)$ in bits.
\n\nArguments: \n\n\npxy: 2D numpy array of shape (x, y)
\n \n", "signature": "(pxy : numpy . ndarray ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.tools.kl_divergence", "modulename": "ultk.effcomm.information_bottleneck.tools", "qualname": "kl_divergence", "kind": "function", "doc": "Compute KL divergence (in nats by defaut) between p and q, $D_{KL}[p \\| q]$.
\n\nArguments: \n\n\np: np.ndarray, lhs of KL divergence \nq: np.ndarray, rhs of KL divergence \n \n", "signature": "(\tp : numpy . ndarray , \tq : numpy . ndarray , \taxis = None , \tbase = 2.718281828459045 ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.tools.information_cond", "modulename": "ultk.effcomm.information_bottleneck.tools", "qualname": "information_cond", "kind": "function", "doc": "Compute the mutual information $I(A;B)$ from a joint distribution defind by $P(A)$ and $P(B|A)$
\n\nArguments: \n\n\npA: array of shape |A|
the prior probability of an input symbol (i.e., the source) \npB_A: array of shape (|A|, |B|)
the probability of an output symbol given the input \n \n", "signature": "(pA : numpy . ndarray , pB_A : numpy . ndarray ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.information_bottleneck.tools.compute_lower_bound", "modulename": "ultk.effcomm.information_bottleneck.tools", "qualname": "compute_lower_bound", "kind": "function", "doc": "Remove all points in a rate-distortion curve that would make it nonmonotonic and\nreturn only the resulting monotonic indices.
\n\nThis is required to remove the random fluctuations in the result induced by the BA algorithm getting stuck in local minima.
\n\nAcknowledgement: https://github.com/epiasini/embo-github-mirror/blob/master/embo/utils.py#L77 .
\n\nArguments: \n\n\nrd_points: list of pairs of floats, where each pair represents an estimated (rate, distortion) pair,\nand ordered by increasing rate . \n \n\nReturns: \n\n\n selected_indices: 1D numpy array containing the indices of the points selected to ensure monotonically decreasing values.
\n \n", "signature": "(rd_points ): ", "funcdef": "def"}, {"fullname": "ultk.effcomm.informativity", "modulename": "ultk.effcomm.informativity", "kind": "module", "doc": "Functions for measuring informativity in efficient communication analyses of languages.
\n"}, {"fullname": "ultk.effcomm.informativity.build_utility_matrix", "modulename": "ultk.effcomm.informativity", "qualname": "build_utility_matrix", "kind": "function", "doc": "Construct the square matrix specifying the utility function defined for pairs of meanings, used for computing communicative success.
\n", "signature": "(\tuniverse : ultk . language . semantics . Universe , \tutility : Callable [[ ultk . language . semantics . Referent , ultk . language . semantics . Referent ], float ] ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.informativity.indicator_utility", "modulename": "ultk.effcomm.informativity", "qualname": "indicator_utility", "kind": "function", "doc": "Indicator utility function, i.e. delta. Returns 1.0 iff ref1 equals ref2.
\n", "signature": "(\tref1 : ultk . language . semantics . Referent , \tref2 : ultk . language . semantics . Referent ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.informativity.informativity", "modulename": "ultk.effcomm.informativity", "qualname": "informativity", "kind": "function", "doc": "The informativity of a language is identified with the successful communication between a speaker and a listener.
\n\nThis function is a wrapper for communicative_success
.
\n\nArguments: \n\n\nlanguage: the language to compute informativity of. \nprior: a probability distribution representing communicative need (frequency) for Referents. \nutility: a function representing the usefulness of listener guesses about speaker Referents, e.g. Referent similarity. To reward only exact recovery of meanings, use the indicator function (default). \nkind: {\"literal, pragmatic\"} Whether to measure informativity using literal or pragmatic agents, as canonically described in the Rational Speech Act framework. The default is \"literal\". \n \n\nConcepts :\n The speaker can be thought of as a conditional distribution over expressions given meanings. The listener is likewise a conditional distribution over meanings given expressions. The communicative need, or cognitive source, is a prior probability over meanings representing how frequently agents need to use certain meanings in communication. The utility function represents the similarity, or appropriateness, of the listener's guess m' about the speaker's intended meaning m.
\n\nFormula :\n The informativity of a language $L$ with meaning space $M$ is defined:
\n\n$I(L) := \\sum_{m \\in M} p(m) \\sum_{i \\in L} p(i|m) \\sum_{\\hat{m} \\in i} p(\\hat{m}|i) \\cdot u(m, \\hat{m})$
\n\nBounds :\n A perfectly informative (=1.0) language can be constructed with a exactly one expression for each meaning.
\n\nFor u() = indicator(), every language has nonzero informativity because a language must contain at least one expression, and an expression must contain at least one meaning.\n
\n", "signature": "(\tlanguage : ultk . language . language . Language , \tprior : numpy . ndarray , \tutility : Callable [[ ultk . language . semantics . Referent , ultk . language . semantics . Referent ], float ] = < function indicator_utility > , \tagent_type : str = 'literal' ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.informativity.communicative_success", "modulename": "ultk.effcomm.informativity", "qualname": "communicative_success", "kind": "function", "doc": "Helper function to compute the literal informativity of a language.
\n\n$I(L) = \\sum_{m, \\hat{m}} P(m, \\hat{m}) \\cdot u(m, \\hat{m})$
\n\n$ = \\sum_{m \\in M} p(m) \\sum_{i \\in L} p(i|m) \\sum_{\\hat{m} \\in i} p(\\hat{m} |i) \\cdot u(m, m')$
\n\n$ = \\sum \\text{diag}(p)SR \\odot U $
\n\nFor more details, see docs/vectorized_informativity .
\n\nArguments: \n\n\nspeaker: a literal or pragmatic speaker, containing a matrix S for P(e | m) \nlistener: a literal or pragmatic listener, containing a matrix R for P(m | e) \nprior: p(m), distribution over meanings representing communicative need \nutility: a function u(m, m') representing similarity of meanings, or pair-wise usefulness of listener guesses about speaker meanings. \n \n", "signature": "(\tspeaker : ultk . effcomm . agent . Speaker , \tlistener : ultk . effcomm . agent . Listener , \tprior : numpy . ndarray , \tutility : Callable [[ ultk . language . semantics . Referent , ultk . language . semantics . Referent ], float ] ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.optimization", "modulename": "ultk.effcomm.optimization", "kind": "module", "doc": "Classes and functions for generating languages that optimize the simplicity/informativeness trade-off, e.g. via an iterative evolutionary algorithm.
\n"}, {"fullname": "ultk.effcomm.optimization.Mutation", "modulename": "ultk.effcomm.optimization", "qualname": "Mutation", "kind": "class", "doc": "
\n"}, {"fullname": "ultk.effcomm.optimization.Mutation.precondition", "modulename": "ultk.effcomm.optimization", "qualname": "Mutation.precondition", "kind": "function", "doc": "Whether a mutation is allowed to apply to a language.
\n", "signature": "(language : ultk . language . language . Language , ** kwargs ) -> bool : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.optimization.Mutation.mutate", "modulename": "ultk.effcomm.optimization", "qualname": "Mutation.mutate", "kind": "function", "doc": "Mutate the language, possibly using a list of expressions.
\n", "signature": "(\tlanguage : ultk . language . language . Language , \texpressions : list [ ultk . language . language . Expression ] , \t** kwargs ) -> ultk . language . language . Language : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.optimization.RemoveExpression", "modulename": "ultk.effcomm.optimization", "qualname": "RemoveExpression", "kind": "class", "doc": "
\n", "bases": "Mutation"}, {"fullname": "ultk.effcomm.optimization.RemoveExpression.precondition", "modulename": "ultk.effcomm.optimization", "qualname": "RemoveExpression.precondition", "kind": "function", "doc": "Whether a mutation is allowed to apply to a language.
\n", "signature": "(language : ultk . language . language . Language , ** kwargs ) -> bool : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.optimization.RemoveExpression.mutate", "modulename": "ultk.effcomm.optimization", "qualname": "RemoveExpression.mutate", "kind": "function", "doc": "Mutate the language, possibly using a list of expressions.
\n", "signature": "(\tlanguage : ultk . language . language . Language , \texpressions : list [ ultk . language . language . Expression ] , \t** kwargs ) -> ultk . language . language . Language : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.optimization.AddExpression", "modulename": "ultk.effcomm.optimization", "qualname": "AddExpression", "kind": "class", "doc": "
\n", "bases": "Mutation"}, {"fullname": "ultk.effcomm.optimization.AddExpression.precondition", "modulename": "ultk.effcomm.optimization", "qualname": "AddExpression.precondition", "kind": "function", "doc": "Whether a mutation is allowed to apply to a language.
\n", "signature": "(language : ultk . language . language . Language , ** kwargs ) -> bool : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.optimization.AddExpression.mutate", "modulename": "ultk.effcomm.optimization", "qualname": "AddExpression.mutate", "kind": "function", "doc": "Mutate the language, possibly using a list of expressions.
\n", "signature": "(\tlanguage : ultk . language . language . Language , \texpressions : list [ ultk . language . language . Expression ] , \t** kwargs ) -> ultk . language . language . Language : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer", "kind": "class", "doc": "Class for approximating the Pareto frontier of languages optimizing the simplicity/informativity trade-off.
\n"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.__init__", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.__init__", "kind": "function", "doc": "Initialize the evolutionary algorithm configurations.
\n\nThe measures of complexity and informativity, the expressions, and the mutations are all specific to the particular semantic domain.
\n\nArguments: \n\n\nobjectives: a dict of the two objectives to optimize for, e.g. simplicity and informativeness, of the form, e.g.\n{\n \"complexity\": comp_measure,\n \"comm_cost\": lambda l: 1 - inf_measure(l)\n} \nexpressions: a list of expressions from which to apply mutations to languages. \nsample_size: the size of the population at every generation. \nmax_muatations: between 1 and this number of mutations will be applied to a subset of the population at the end of each generation. \ngenerations: how many iterations to run the evolutionary algorithm for. \nlang_size: between 1 and this number of expressions comprise a language. \nmutations: (optional) a list of Mutation objects, defaults to add/remove expression \n \n", "signature": "(\tobjectives : list [ typing . Callable [[ ultk . language . language . Language ], typing . Any ]] , \texpressions : list [ ultk . language . language . Expression ] , \tsample_size : int , \tmax_mutations : int , \tgenerations : int , \tlang_size : int | None = None , \tmutations: tuple[typing.Type[ultk.effcomm.optimization.Mutation], ...] = (<class 'ultk.effcomm.optimization.AddExpression'>, <class 'ultk.effcomm.optimization.RemoveExpression'>) ) "}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.objectives", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.objectives", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.expressions", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.expressions", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.mutations", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.mutations", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_size", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.sample_size", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.max_mutations", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.max_mutations", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.generations", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.generations", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.lang_size", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.lang_size", "kind": "variable", "doc": "
\n", "annotation": ": int"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.dominating_languages", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.dominating_languages", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.explored_languages", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.explored_languages", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.fit", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.fit", "kind": "function", "doc": "Computes the Pareto frontier, a set languages which cannot be both more simple and more informative.
\n\nUses pygmo's nondominated_front method for computing a population's best solutions to a multi-objective optimization problem.
\n\nArguments: \n\n\nseed_population: a list of languages representing the population at generation 0 of the algorithm. \nexplore: a float in [0,1] representing how much to optimize for fitness\n(optimality wrt pareto front of complexity and comm_cost), and how much to randomly explore. \n \n\nReturns: \n\n\n a dict of the estimated optimization solutions, as well as points explored along the way; of the form
\n\n{\n\"dominating_languages\": list of languages as estimated solutions,\n\"explored_languages\": list of all the languages explored during the evolutionary algorithm,\n}\n
\n \n", "signature": "(\tself , \tseed_population : list [ ultk . language . language . Language ] , \texplore : float = 0.0 ) -> dict [ str , list [ ultk . language . language . Language ]] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.sample_mutated", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.sample_mutated", "kind": "function", "doc": "Arguments: \n\n\nlanguages: dominating languages of a generation \namount: sample_size. \nexpressions: the list of expressions \n \n\nReturns: \n\n\n list of updated languages
\n \n", "signature": "(\tself , \tlanguages : list [ ultk . language . language . Language ] ) -> list [ ultk . language . language . Language ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.optimization.EvolutionaryOptimizer.mutate", "modulename": "ultk.effcomm.optimization", "qualname": "EvolutionaryOptimizer.mutate", "kind": "function", "doc": "Randomly selects a mutation that is allowed to apply and applies it to a language.
\n\nArguments: \n\n\nlanguage: the Language to mutate \nexpressions: the list of all possible expressions.\nSome mutations need access to this list, so it is part of the mutation api. \n \n\nReturns: \n\n\n the mutated Language
\n \n", "signature": "(\tself , \tlanguage : ultk . language . language . Language ) -> ultk . language . language . Language : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.optimization.sample_parents", "modulename": "ultk.effcomm.optimization", "qualname": "sample_parents", "kind": "function", "doc": "Use the explore parameter to explore possibly suboptimal areas of the language space.
\n\nArguments: \n\n\ndominating_languages: a list of the languages with current best fitness with respect to the objectives. \nexplored_languages: a list of all languages encountered during the evolutionary algorithm. \nexplore: a float in [0,1]
specifying how much to explore possibly suboptimal languages.\nIf set to 0, parent_languages
is just dominating_languages
. \n \n\nReturns: \n\n\n the languages to serve as the next generation (after possible mutations)
\n \n", "signature": "(\tdominating_languages : set [ ultk . language . language . Language ] , \texplored_languages : set [ ultk . language . language . Language ] , \texplore : float ) -> list [ ultk . language . language . Language ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.probability", "modulename": "ultk.effcomm.probability", "kind": "module", "doc": "
\n"}, {"fullname": "ultk.effcomm.probability.PRECISION", "modulename": "ultk.effcomm.probability", "qualname": "PRECISION", "kind": "variable", "doc": "
\n", "default_value": "1e-12"}, {"fullname": "ultk.effcomm.probability.marginal", "modulename": "ultk.effcomm.probability", "qualname": "marginal", "kind": "function", "doc": "Computer marginals of a joint distribution.
\n\nArguments: \n\n\npXY: a joint distribution of shape (|X|, |Y|), corresponding to p(x, y) \naxis: the axis along which to compute the marginal \n \n\nReturns: \n\n\n either pY (axis = 0) or pX (default, axis = 1)
\n \n", "signature": "(pXY : numpy . ndarray , axis : int = 1 ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.probability.joint", "modulename": "ultk.effcomm.probability", "qualname": "joint", "kind": "function", "doc": "Compute a joint distribution from a conditional and a prior.
\n\nArguments: \n\n\npY_X: a conditional distribution of shape (|X|, |Y|), corresponding to p(y|x) \npX: a prior distribution of shape (|X|,), corresponding to p(x) \n \n\nReturns: \n\n\n a joint distribution of shape (|X|, |Y|), corresponding to p(x, y)
\n \n", "signature": "(pY_X : numpy . ndarray , pX : numpy . ndarray ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.probability.marginalize", "modulename": "ultk.effcomm.probability", "qualname": "marginalize", "kind": "function", "doc": "Marginalize a conditional distribution (without a detour through the joint).
\n\nArguments: \n\n\npY_X: a conditional distribution of shape (|X|, |Y|), corresponding to p(y|x) \npX: a prior distribution of shape (|X|,), corresponding to p(x) \n \n\nReturns: \n\n\n a marginal distribution of shape (|Y|,), corresponding to p(y)
\n \n", "signature": "(pY_X : numpy . ndarray , pX : numpy . ndarray ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.probability.bayes", "modulename": "ultk.effcomm.probability", "qualname": "bayes", "kind": "function", "doc": "Perform Bayesian inference, computing p(x|y) from p(y|x) and p(x).
\n\nArguments: \n\n\npY_X: a conditional distribution of shape (|X|, |Y|), corresponding to p(y|x) \npX: a prior distribution of shape (|X|,), corresponding to p(x) \n \n\nReturns: \n\n\n a posterior distribution of shape (|Y|, |X|), corresponding to p(x|y)
\n \n", "signature": "(pY_X : numpy . ndarray , pX : numpy . ndarray ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.sampling", "modulename": "ultk.effcomm.sampling", "kind": "module", "doc": "Functions for sampling expressions into languages.
\n"}, {"fullname": "ultk.effcomm.sampling.get_hypothetical_variants", "modulename": "ultk.effcomm.sampling", "qualname": "get_hypothetical_variants", "kind": "function", "doc": "For each system (parameterized by a language or else a speaker), generate num
hypothetical variants by permuting the signals that the system assigns to states.
\n\nArguments: \n\n\nlanguages: a list of languages to permute, by constructing LiteralSpeakers and permuting their weights. \nspeakers: a list of speakers of a language, whose weights can be directly permuted. Should be used instead of languages
if possible, because it can be more finegrained (every language can be associated with multiple speakers). \ntotal: the total number of hypothetical variants to obtain. Should be greater than the number of languages. \n \n\nReturns: \n\n\n hypothetical_variants: a list of type either Language or np.ndarray depending on whether languages
or speakers
was passed, representing hypothetical variants of the systems passed. If speakers
was passed, a list of speakers is returned.
\n \n", "signature": "(\tlanguages : list [ ultk . language . language . Language ] = None , \tspeakers : list [ ultk . effcomm . agent . Speaker ] = None , \ttotal : int = 0 ) -> list [ typing . Any ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.tradeoff", "modulename": "ultk.effcomm.tradeoff", "kind": "module", "doc": "Functions for constructing an efficient communication analysis by measuring the simplicity/informativeness trade-off languages and formatting results as a dataframe or a plot.
\n"}, {"fullname": "ultk.effcomm.tradeoff.dominates", "modulename": "ultk.effcomm.tradeoff", "qualname": "dominates", "kind": "function", "doc": "Determine whether p1 dominates p2,\ni.e. whether for every i p1[i] <= p2[i]\nand for some i p1[i] < p2[i].
\n\nArguments: \n\n\np1: a point \np2: another point \n \n\nReturns: \n\n\n whether or not p1 dominates p2
\n \n", "signature": "(p1 : tuple [ float , ... ] , p2 : tuple [ float , ... ] ) -> bool : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.tradeoff.non_dominated_2d", "modulename": "ultk.effcomm.tradeoff", "qualname": "non_dominated_2d", "kind": "function", "doc": "Return the non-dominated (Pareto) front of a list of 2-D points, using Kung's algorithm.
\n\nArguments: \n\n\npoints: A list of 2-D points \n \n\nReturns: \n\n\n a list, the indices of points
for which no other point is as good on all dimensions\n and better on at least one
\n \n", "signature": "(points : Sequence [ tuple [ float , float ]] ) -> list [ int ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.tradeoff.pareto_optimal_languages", "modulename": "ultk.effcomm.tradeoff", "qualname": "pareto_optimal_languages", "kind": "function", "doc": "Use non_dominated_2d to compute the Pareto languages.
\n", "signature": "(\tlanguages : list [ ultk . language . language . Language ] , \tobjectives : list [ typing . Callable [[ ultk . language . language . Language ], typing . Any ]] , \tunique : bool = False ) -> list [ ultk . language . language . Language ] : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.tradeoff.pareto_min_distances", "modulename": "ultk.effcomm.tradeoff", "qualname": "pareto_min_distances", "kind": "function", "doc": "Measure the Pareto optimality of each language by measuring its Euclidean closeness to the frontier. The frontier is a line (list of points) interpolated from the pareto points.
\n\nArguments: \n\n\npoints: the list of all language (x, y) pairs, where x and y are usually communicative cost and complexity. \npareto_points: the list of all dominant language (x, y) pairs to constitute the Pareto frontier. The points should have been measured by pygmo's non_dominated_front_2d function. \n \n\nReturns: \n\n\n min_distances: an array of shape len(points)
Euclidean distances for each language to the closest point on the Pareto frontier.
\n \n", "signature": "(points : list [ tuple ] , pareto_points : list [ tuple ] ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.tradeoff.interpolate_data", "modulename": "ultk.effcomm.tradeoff", "qualname": "interpolate_data", "kind": "function", "doc": "Interpolate the points yielded by the pareto optimal languages into a continuous (though not necessarily smooth) curve.
\n\nArguments: \n\n\npoints: an list of (comm_cost, complexity) pairs of size [dominating_languages], a possibly non-smooth set of solutions to the trade-off. \nmin_cost: the minimum communicative cost value possible to interpolate from. \nmax_cost: the maximum communicative cost value possible to interpolate from. A natural assumption is to let complexity=0.0 if max_cost=1.0, which will result in a Pareto curve that spans the entire 2d space, and consequently the plot with x and y limits both ranging [0.0, 1.0]. \nnum: the number of x-axis points (cost) to interpolate. Controls smoothness of curve. \n \n\nReturns: \n\n\n interpolated_points: an array of size (num, num)
\n \n", "signature": "(\tpoints : list [ tuple [ float ]] , \tmin_cost : float = 0.0 , \tmax_cost : float = 1.0 , \tnum = 5000 ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.effcomm.tradeoff.tradeoff", "modulename": "ultk.effcomm.tradeoff", "qualname": "tradeoff", "kind": "function", "doc": "Builds a final efficient communication analysis by measuring a list of languages, updating their internal data, and returning the results.
\n\nThis function measures possibly many graded or categorical properties of each language, but minimally the properties of commmunicative cost and complexity. These two measures fully define the results of an efficiency analysis, in the sense they define the optimal solutions.
\n\nArguments: \n\n\nlanguages: A list representing the pool of all languages to be measured for an efficient communication analysis. \nx: the first pressure to measure, e.g. communicative cost. \ny: the second pressure to measure, e.g. cognitive complexity. \nfrontier: a list of (comm_cost, complexity) points representing a Pareto frontier to measure optimality w.r.t. \n \n\nReturns: \n\n\n a dictionary of the population and the pareto front, of the form
\n\n{\n \"languages\": the list of languages, with their internal efficient communication data updated,\n\n \"dominating_languages\": the list of the languages dominating the population w.r.t. comm_cost and complexity. If no `frontier` is none, this can be considered the Pareto frontier.\n}\n
\n \n", "signature": "(\tlanguages : list [ ultk . language . language . Language ] , \tproperties : dict [ str , typing . Callable [[ ultk . language . language . Language ], typing . Any ]] , \tx : str = 'comm_cost' , \ty : str = 'complexity' , \tfrontier : list [ tuple ] = None ) -> dict [ str , list [ ultk . language . language . Language ]] : ", "funcdef": "def"}, {"fullname": "ultk.language", "modulename": "ultk.language", "kind": "module", "doc": "Classes for modeling (natural or hypothetical) languagese.
\n\nAt the current stage of development, ULTK focuses on supporting abstractions to model the mapping between expressions and meanings of a language. So far, we leave almost everything besides this basic mapping (morphosyntax, phonology, phonetic inventories, among other features of human languages) to future work.
\n\nThe ultk.language.language
submodule contains classes for constructing a language, which can contain one or more expressions.
\n\nThe ultk.language.semantics
submodule contains classes for defining a universe (meaning space) of referents (denotations) and meanings (categories).
\n"}, {"fullname": "ultk.language.grammar", "modulename": "ultk.language.grammar", "kind": "module", "doc": "
\n"}, {"fullname": "ultk.language.grammar.Rule", "modulename": "ultk.language.grammar", "qualname": "Rule", "kind": "class", "doc": "Basic class for a grammar rule. Grammar rules in ULTK correspond\nto functions. One can think of a grammar as generating complex functions from\nmore basic ones.
\n\nAttributes: \n\n\nlhs: left-hand side of the rule (can be anything)\nconceptually, the output type of a function \nrhs: right-hand side; assumed to be an iterable\nconceptually, a list of types of inputs \nfunc: a callable, the function to be computed when a node with this rule is executed \nname: name of the function \nweight: a relative weight to assign to this rule\nwhen added to a grammar, all rules with the same LHS will be weighted together \n \n"}, {"fullname": "ultk.language.grammar.Rule.__init__", "modulename": "ultk.language.grammar", "qualname": "Rule.__init__", "kind": "function", "doc": "
\n", "signature": "(\tname : str , \tlhs : Any , \trhs : Sequence | None , \tfunc : Callable = < function Rule .< lambda >> , \tweight : float = 1.0 ) "}, {"fullname": "ultk.language.grammar.Rule.name", "modulename": "ultk.language.grammar", "qualname": "Rule.name", "kind": "variable", "doc": "
\n", "annotation": ": str"}, {"fullname": "ultk.language.grammar.Rule.lhs", "modulename": "ultk.language.grammar", "qualname": "Rule.lhs", "kind": "variable", "doc": "
\n", "annotation": ": Any"}, {"fullname": "ultk.language.grammar.Rule.rhs", "modulename": "ultk.language.grammar", "qualname": "Rule.rhs", "kind": "variable", "doc": "
\n", "annotation": ": Sequence | None"}, {"fullname": "ultk.language.grammar.Rule.func", "modulename": "ultk.language.grammar", "qualname": "Rule.func", "kind": "function", "doc": "
\n", "signature": "(* args ): ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.Rule.weight", "modulename": "ultk.language.grammar", "qualname": "Rule.weight", "kind": "variable", "doc": "
\n", "annotation": ": float", "default_value": "1.0"}, {"fullname": "ultk.language.grammar.Rule.is_terminal", "modulename": "ultk.language.grammar", "qualname": "Rule.is_terminal", "kind": "function", "doc": "Whether this is a terminal rule. In our framework, this means that RHS is empty,\ni.e. there are no arguments to the function.
\n", "signature": "(self ) -> bool : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.Rule.from_callable", "modulename": "ultk.language.grammar", "qualname": "Rule.from_callable", "kind": "function", "doc": "Create a Rule from the type-annotations of a function.
\n\nFor example, given the following method definition:
\n\n\n
def _and ( p1 : bool , p2 : bool ) -> bool : \n return p1 and p2 \n
\n
\n\nThis class method will return the Rule:
\n\nRule(name=\"_and\", lhs=bool, rhs=(bool, bool), func=_and)\n
\n\nThere are two special kwargs that can be used in the function definition:
\n\n\nweight
: a float, which will be used as the weight of the rule \nname
: a string, which will be used as the name of the rule, if you want it to be different than the name of the method \n \n", "signature": "(cls , func : Callable ) -> ultk . language . grammar . Rule : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.GrammaticalExpression", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression", "kind": "class", "doc": "A GrammaticalExpression has been built up from a Grammar by applying a sequence of Rules.\nCrucially, it is _callable_, using the functions corresponding to each rule.
\n\nA GrammaticalExpression, when called, takes in a Referent. Because of this, a Meaning can\nbe generated by specifying a Universe (which contains Referents).
\n\nAttributes: \n\n\nrule_name: name of the top-most function \nfunc: the function \nchildren: child expressions (possibly empty) \n \n", "bases": "ultk.language.language.Expression[~T]"}, {"fullname": "ultk.language.grammar.GrammaticalExpression.__init__", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.__init__", "kind": "function", "doc": "
\n", "signature": "(\tform : str = '' , \tmeaning : ultk . language . semantics . Meaning [ ~ T ] = Meaning ( mapping = FrozenDict ({}), universe = Universe ( referents = (), prior = ())) , \t* , \trule_name : str , \tfunc : Callable , \tchildren : tuple | None , \tterm_expression : str = '' ) "}, {"fullname": "ultk.language.grammar.GrammaticalExpression.rule_name", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.rule_name", "kind": "variable", "doc": "
\n", "annotation": ": str"}, {"fullname": "ultk.language.grammar.GrammaticalExpression.func", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.func", "kind": "variable", "doc": "
\n", "annotation": ": Callable"}, {"fullname": "ultk.language.grammar.GrammaticalExpression.children", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.children", "kind": "variable", "doc": "
\n", "annotation": ": tuple | None"}, {"fullname": "ultk.language.grammar.GrammaticalExpression.term_expression", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.term_expression", "kind": "variable", "doc": "
\n", "annotation": ": str", "default_value": "''"}, {"fullname": "ultk.language.grammar.GrammaticalExpression.yield_string", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.yield_string", "kind": "function", "doc": "Get the 'yield' string of this term, i.e. the concatenation\nof the leaf nodes.
\n\nThis is useful for thinking of a Grammar
as generating derivation trees for\nan underlying CFG. This method will then generate the strings generated by\nthe corresponding CFG.
\n", "signature": "(self ) -> str : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.GrammaticalExpression.evaluate", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.evaluate", "kind": "function", "doc": "
\n", "signature": "(\tself , \tuniverse : ultk . language . semantics . Universe ) -> ultk . language . semantics . Meaning : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.GrammaticalExpression.add_child", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.add_child", "kind": "function", "doc": "
\n", "signature": "(self , child ) -> None : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.GrammaticalExpression.to_dict", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.to_dict", "kind": "function", "doc": "Return a dictionary representation of the expression.
\n", "signature": "(self ) -> dict : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.GrammaticalExpression.from_dict", "modulename": "ultk.language.grammar", "qualname": "GrammaticalExpression.from_dict", "kind": "function", "doc": "
\n", "signature": "(\tcls , \tthe_dict : dict , \tgrammar : ultk . language . grammar . Grammar ) -> ultk . language . grammar . GrammaticalExpression : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.UniquenessArgs", "modulename": "ultk.language.grammar", "qualname": "UniquenessArgs", "kind": "class", "doc": "Arguments for specifying uniqueness of GrammaticalExpressions in a Grammar.
\n\nAttributes: \n\n\nunique_expressions: a dictionary in which to store unique Expressions \nkey: a function used to evaluate uniqueness \ncompare_func: a comparison function, used to decide which Expression to add to the dict\nnew Expressions will be added as values to unique_dict
only if they are minimal\namong those sharing the same key (by unique_key
) according to this func \n \n", "bases": "typing.TypedDict"}, {"fullname": "ultk.language.grammar.UniquenessArgs.unique_expressions", "modulename": "ultk.language.grammar", "qualname": "UniquenessArgs.unique_expressions", "kind": "variable", "doc": "
\n", "annotation": ": dict[typing.Any, dict[typing.Any, ultk.language.grammar.GrammaticalExpression]]"}, {"fullname": "ultk.language.grammar.UniquenessArgs.key", "modulename": "ultk.language.grammar", "qualname": "UniquenessArgs.key", "kind": "variable", "doc": "
\n", "annotation": ": Callable[[ultk.language.grammar.GrammaticalExpression], Any]"}, {"fullname": "ultk.language.grammar.UniquenessArgs.compare_func", "modulename": "ultk.language.grammar", "qualname": "UniquenessArgs.compare_func", "kind": "variable", "doc": "
\n", "annotation": ": Callable[[ultk.language.grammar.GrammaticalExpression, ultk.language.grammar.GrammaticalExpression], bool]"}, {"fullname": "ultk.language.grammar.Grammar", "modulename": "ultk.language.grammar", "qualname": "Grammar", "kind": "class", "doc": "At its core, a Grammar is a set of Rules with methods for generating GrammaticalExpressions.
\n"}, {"fullname": "ultk.language.grammar.Grammar.__init__", "modulename": "ultk.language.grammar", "qualname": "Grammar.__init__", "kind": "function", "doc": "
\n", "signature": "(start : Any ) "}, {"fullname": "ultk.language.grammar.Grammar.add_rule", "modulename": "ultk.language.grammar", "qualname": "Grammar.add_rule", "kind": "function", "doc": "
\n", "signature": "(self , rule : ultk . language . grammar . Rule ): ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.Grammar.parse", "modulename": "ultk.language.grammar", "qualname": "Grammar.parse", "kind": "function", "doc": "Parse a string representation of an expression of a grammar.\nNote that this is not a general-purpose parsing algorithm. We assume that the strings are of the form\n parent_name(child1_name, ..., childn_name)\nwhere parent_name is the name of a rule of this grammar that has a length-n RHS, and that\nchildi_name is the name of a rule for each child i.
\n\nArguments: \n\n\nexpression: string in the above format \n \n\nReturns: \n\n\n the corresponding GrammaticalExpression
\n \n", "signature": "(\tself , \texpression : str , \topener : str = '(' , \tcloser : str = ')' , \tdelimiter : str = ',' ) -> ultk . language . grammar . GrammaticalExpression : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.Grammar.generate", "modulename": "ultk.language.grammar", "qualname": "Grammar.generate", "kind": "function", "doc": "Generate an expression from a given lhs.
\n", "signature": "(self , lhs : Any = None ) -> ultk . language . grammar . GrammaticalExpression : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.Grammar.enumerate", "modulename": "ultk.language.grammar", "qualname": "Grammar.enumerate", "kind": "function", "doc": "Enumerate all expressions from the grammar up to a given depth from a given LHS.\nThis method also can update a specified dictionary to store only _unique_ expressions, with\na user-specified criterion of uniqueness.
\n\nArguments: \n\n\ndepth: how deep the trees should be \nlhs: left hand side to start from; defaults to the grammar's start symbol \nuniqueness_args: a dictionary specifying the parameters for uniqueness:\nunique_dict: a dictionary in which to store unique Expressions\nkey: a function used to evaluate uniqueness\ncompare_func: a comparison function, used to decide which Expression to add to the dict\n new Expressions will be added as values to unique_dict
only if they are _minimal_\n among those sharing the same key (by unique_key
) according to this func \n \n\nYields: \n\n\n all GrammaticalExpressions up to depth
\n \n", "signature": "(\tself , \tdepth : int = 8 , \tlhs : Any = None , \tuniqueness_args : ultk . language . grammar . UniquenessArgs | None = None ) -> Generator [ ultk . language . grammar . GrammaticalExpression , NoneType , NoneType ] : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.Grammar.enumerate_at_depth", "modulename": "ultk.language.grammar", "qualname": "Grammar.enumerate_at_depth", "kind": "function", "doc": "Enumerate GrammaticalExpressions for this Grammar _at_ a fixed depth.
\n", "signature": "(\tself , \tdepth : int , \tlhs : Any , \tuniqueness_args : ultk . language . grammar . UniquenessArgs | None = None , \tcache : dict | None = None ) -> Generator [ ultk . language . grammar . GrammaticalExpression , NoneType , NoneType ] : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.Grammar.get_unique_expressions", "modulename": "ultk.language.grammar", "qualname": "Grammar.get_unique_expressions", "kind": "function", "doc": "Get all unique GrammaticalExpressions, up to a certain depth, with a user-specified criterion\nof uniqueness, and a specified comparison function for determining which Expression to save when there's a clash.\nThis can be used, for instance, to measure the minimum description length of some\nMeanings, by using expression.evaluate(), which produces a Meaning for an Expression, as the\nkey for determining uniqueness, and length of the expression as comparison.
\n\nThis is a wrapper around enumerate
, but which produces the dictionary of key->Expression entries\nand returns it. (enumerate
is a generator with side effects).
\n\nFor Args, see the docstring for enumerate
.
\n\nNote: if you additionally want to store _all_ expressions, and not just the unique ones, you should\ndirectly use enumerate
.
\n\nReturns: \n\n\n dictionary of {key: GrammaticalExpression}, where the keys are generated by unique_key
\n The GrammticalExpression which is the value will be the one that is minimum among\n compare_func
amongst all Expressions up to depth
which share the same key
\n \n", "signature": "(\tself , \tdepth : int , \tunique_key : Callable [[ ultk . language . grammar . GrammaticalExpression ], Any ] , \tcompare_func : Callable [[ ultk . language . grammar . GrammaticalExpression , ultk . language . grammar . GrammaticalExpression ], bool ] , \tlhs : Any = None , \tmax_size : float = inf ) -> dict [ typing . Any , ultk . language . grammar . GrammaticalExpression ] : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.Grammar.get_all_rules", "modulename": "ultk.language.grammar", "qualname": "Grammar.get_all_rules", "kind": "function", "doc": "Get all rules as a list.
\n", "signature": "(self ) -> list [ ultk . language . grammar . Rule ] : ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.Grammar.from_yaml", "modulename": "ultk.language.grammar", "qualname": "Grammar.from_yaml", "kind": "function", "doc": "Read a grammar specified in a simple YAML format.
\n\nExpected format:
\n\nstart: bool\nrules:\n- lhs: bool\n rhs:\n - bool\n - bool\n name: \"and\"\n func: \"lambda p1, p2 : p1 and p2\"\n- lhs: bool\n rhs:\n - bool\n - bool\n name: \"or\"\n func: \"lambda p1, p2 : p1 or p2\"\n
\n\nNote that for each fule, the value for func
will be passed to\neval
, so be careful!
\n\nArguments: \n\n\nfilename: file containing a grammar in the above format \n \n", "signature": "(cls , filename : str ): ", "funcdef": "def"}, {"fullname": "ultk.language.grammar.Grammar.from_module", "modulename": "ultk.language.grammar", "qualname": "Grammar.from_module", "kind": "function", "doc": "Read a grammar from a module.
\n\nThe module should have a list of type-annotated method definitions, each of which will correspond to one Rule in the new Grammar.\nSee the docstring for Rule.from_callable
for more information on how that step works.
\n\nThe start symbol of the grammar can either be specified by start = XXX
somewhere in the module,\nor will default to the LHS of the first rule in the module (aka the return type annotation of the first method definition).
\n\nArguments: \n\n\nmodule_name: name of the module \n \n", "signature": "(cls , module_name : str ) -> ultk . language . grammar . Grammar : ", "funcdef": "def"}, {"fullname": "ultk.language.language", "modulename": "ultk.language.language", "kind": "module", "doc": "Classes for modeling languages as form-meaning mappings, most important among them the Language and Expression classes.
\n\nExample usage: \n\n\n \n
>>> from ultk.language.language import Expression , Language \n>>> # assuming the meaning `a_few_meaning` has already been constructed \n>>> # define the expression \n>>> a_few = NumeralExpression ( form = "a few" , meaning = a_few_meaning ) \n>>> # define a very small language \n>>> lang_1 = Language ([ a_few ]) \n>>> # or a slightly larger one with synonymy \n>>> lang_2 = Language ([ a_few ] * 3 ) \n
\n
\n \n"}, {"fullname": "ultk.language.language.Expression", "modulename": "ultk.language.language", "qualname": "Expression", "kind": "class", "doc": "Minimally contains a form and a meaning.
\n", "bases": "typing.Generic[~T]"}, {"fullname": "ultk.language.language.Expression.__init__", "modulename": "ultk.language.language", "qualname": "Expression.__init__", "kind": "function", "doc": "
\n", "signature": "(\tform : str = '' , \tmeaning : ultk . language . semantics . Meaning [ ~ T ] = Meaning ( mapping = FrozenDict ({}), universe = Universe ( referents = (), prior = ())) ) "}, {"fullname": "ultk.language.language.Expression.form", "modulename": "ultk.language.language", "qualname": "Expression.form", "kind": "variable", "doc": "
\n", "annotation": ": str", "default_value": "''"}, {"fullname": "ultk.language.language.Expression.meaning", "modulename": "ultk.language.language", "qualname": "Expression.meaning", "kind": "variable", "doc": "
\n", "annotation": ": ultk.language.semantics.Meaning[~T]", "default_value": "Meaning(mapping=FrozenDict({}), universe=Universe(referents=(), prior=()))"}, {"fullname": "ultk.language.language.Expression.can_express", "modulename": "ultk.language.language", "qualname": "Expression.can_express", "kind": "function", "doc": "Return True if the expression can express the input single meaning point and false otherwise.
\n", "signature": "(self , referent : ultk . language . semantics . Referent ) -> bool : ", "funcdef": "def"}, {"fullname": "ultk.language.language.Expression.to_dict", "modulename": "ultk.language.language", "qualname": "Expression.to_dict", "kind": "function", "doc": "Return a dictionary representation of the expression.
\n", "signature": "(self ) -> dict : ", "funcdef": "def"}, {"fullname": "ultk.language.language.Language", "modulename": "ultk.language.language", "qualname": "Language", "kind": "class", "doc": "Minimally contains Expression objects.
\n"}, {"fullname": "ultk.language.language.Language.__init__", "modulename": "ultk.language.language", "qualname": "Language.__init__", "kind": "function", "doc": "
\n", "signature": "(expressions : tuple [ ultk . language . language . Expression , ... ] , ** kwargs ) "}, {"fullname": "ultk.language.language.Language.universe", "modulename": "ultk.language.language", "qualname": "Language.universe", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.language.language.Language.expressions", "modulename": "ultk.language.language", "qualname": "Language.expressions", "kind": "variable", "doc": "
\n", "annotation": ": frozenset[ultk.language.language.Expression]"}, {"fullname": "ultk.language.language.Language.add_expression", "modulename": "ultk.language.language", "qualname": "Language.add_expression", "kind": "function", "doc": "Add an expression to the list of expressions in a language.
\n", "signature": "(self , e : ultk . language . language . Expression ): ", "funcdef": "def"}, {"fullname": "ultk.language.language.Language.is_natural", "modulename": "ultk.language.language", "qualname": "Language.is_natural", "kind": "function", "doc": "Whether a language represents a human natural language.
\n", "signature": "(self ) -> bool : ", "funcdef": "def"}, {"fullname": "ultk.language.language.Language.degree_property", "modulename": "ultk.language.language", "qualname": "Language.degree_property", "kind": "function", "doc": "Count what percentage of expressions in a language have a given property.
\n", "signature": "(\tself , \tproperty : Callable [[ ultk . language . language . Expression ], bool ] ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.language.language.Language.binary_matrix", "modulename": "ultk.language.language", "qualname": "Language.binary_matrix", "kind": "function", "doc": "Get a binary matrix of shape (num_meanings, num_expressions)
\nspecifying which expressions can express which meanings.
\n", "signature": "(self ) -> numpy . ndarray : ", "funcdef": "def"}, {"fullname": "ultk.language.language.Language.as_dict_with_properties", "modulename": "ultk.language.language", "qualname": "Language.as_dict_with_properties", "kind": "function", "doc": "Return a dictionary representation of the language, including additional properties as keyword arguments.
\n\nThis is used in some examples to serialize the language to outputs.
\n", "signature": "(self , ** kwargs ) -> dict : ", "funcdef": "def"}, {"fullname": "ultk.language.language.aggregate_expression_complexity", "modulename": "ultk.language.language", "qualname": "aggregate_expression_complexity", "kind": "function", "doc": "Aggregate complexities for individual Expression
s into a complexity for a Language
.
\n\nArguments: \n\n\nlanguage: the Language to measure \nexpression_complexity_func: the function that returns the complexity of an individual expression \naggregator: (optional, default = sum) the function that aggregates individual complexities \n \n\nReturns: \n\n\n a float, the complexity of a language
\n \n", "signature": "(\tlanguage : ultk . language . language . Language , \texpression_complexity_func : Callable [[ ultk . language . language . Expression ], float ] , \taggregator : Callable [[ Iterable [ float ]], float ] = < built - in function sum > ) -> float : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling", "modulename": "ultk.language.sampling", "kind": "module", "doc": "
\n"}, {"fullname": "ultk.language.sampling.powerset", "modulename": "ultk.language.sampling", "qualname": "powerset", "kind": "function", "doc": "Enumerate all _non-empty_ subsets of an iterable up to a given maximum size, e.g.:\npowerset([1,2,3]) --> (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)
\n\nlightly adapted from itertools Recipes at\nhttps://docs.python.org/3/library/itertools.html#itertools-recipes
\n\nArguments: \n\n\niterable: elements from which to form subsets \nmax_size: largest subsets (inclusive) to return \n \n\nReturns: \n\n\n iterator over all subsets from size 1 to max_size
of elements from iterable
\n \n", "signature": "(iterable : Iterable , max_size : int | None = None ) -> Iterable : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling.all_meanings", "modulename": "ultk.language.sampling", "qualname": "all_meanings", "kind": "function", "doc": "Generate all Meanings (sets of Referents) from a given Universe.
\n", "signature": "(\tuniverse : ultk . language . semantics . Universe ) -> Generator [ ultk . language . semantics . Meaning , NoneType , NoneType ] : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling.all_expressions", "modulename": "ultk.language.sampling", "qualname": "all_expressions", "kind": "function", "doc": "Generate Expressions from an iterable of Meanings.
\n", "signature": "(\tmeanings : Iterable [ ultk . language . semantics . Meaning ] ) -> Generator [ ultk . language . language . Expression , NoneType , NoneType ] : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling.all_languages", "modulename": "ultk.language.sampling", "qualname": "all_languages", "kind": "function", "doc": "Generate all Languages (sets of Expressions) from a given set of Expressions.
\n\nArguments: \n\n\nexpressions: iterable of all possible expressions \nlanguage_class: the type of language to generate \nmax_size: largest size for a language; if None, all subsets of expressions will be used \n \n\nYields: \n\n\n Languages with subsets of Expressions from expressions
\n \n", "signature": "(\texpressions : Iterable [ ultk . language . language . Expression ] , \tlanguage_class: Type[ultk.language.language.Language] = <class 'ultk.language.language.Language'>, \tmax_size : int | None = None ) -> Generator [ ultk . language . language . Language , NoneType , NoneType ] : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling.upto_comb", "modulename": "ultk.language.sampling", "qualname": "upto_comb", "kind": "function", "doc": "Return the number of ways of choosing _up to max_k_ items from\nn items without repetition. Just an iterator of math.comb for n from\n1 to max_k.
\n", "signature": "(num : int , max_k : int ) -> int : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling.random_languages", "modulename": "ultk.language.sampling", "qualname": "random_languages", "kind": "function", "doc": "Generate unique Languages by randomly sampling subsets of Expressions, either in a uniform or stratified way.\nIf there are fewer than sample_size
possible Languages up to size max_size
,\nthis method will just return all languages up to that size (and so the sample may\nbe smaller than sample_size
).
\n\nSome use cases:
\n\nWith sample_size=None
, get all languages.
\n\n\n
>>> random_languages ( expressions ) \n
\n
\n\nWith sample_size
and uniform sampling, get random languages:
\n\n\n
>>> random_languages ( expressions , sample_size = 1000 ) \n
\n
\n\nStratified sampling, with and without a max_size
:
\n\n\n
>>> random_languages ( expressions , sample_size = 1000 , sampling_strategy = "stratified" ) \n>>> random_languages ( expressions , sample_size = 1000 , sampling_strategy = "stratified" , max_size = 10 ) \n
\n
\n\nArguments: \n\n\nexpressions: all possible expressions \nsampling_strategy: how to sample subsets of expressions\nuniform: for every expression, choose whether or not to include it in a given language\nstratified: first sample a size for a Language, then choose that many random Expressions\n (i) this has the effect of \"upsampling\" from smaller Language sizes\n (ii) this can be used with max_size
to only generate Languages up to a given number of expressions \nsample_size: how many languages to return\nif None, will return all languages up to max_size
\nlanguage_class: type of Language \nmax_size: largest possible Language to generate\nif None, will be the length of expressions
\nNB: this argument has no effect when sampling_strategy
is \"uniform\" \n \n\nReturns: \n\n\n a list of randomly sampled Languages
\n \n", "signature": "(\texpressions : Iterable [ ultk . language . language . Expression ] , \tsampling_strategy : str = 'uniform' , \tsample_size : int | None = None , \tlanguage_class: Type[ultk.language.language.Language] = <class 'ultk.language.language.Language'>, \tmax_size : int | None = None ) -> list [ ultk . language . language . Language ] : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling.generate_languages", "modulename": "ultk.language.sampling", "qualname": "generate_languages", "kind": "function", "doc": "Generate languages by randomly sampling vocabularies as bags of expressions.
\n\nA predicate (binary-valued property) of expressions may be supplied, which can be used to adjust the composition of vocabularies (e.g., by the percent of expressions satisfying the predicate).
\n\nIf sample size <= nCr, then take a random sample_size set of combinations. Otherwise, to prevent repeat languages, treat nCr as the sample size.
\n\nArguments: \n\n\nexpressions: a list of the possible expressions to sample from. \nlang_size: the maximum (or exact) number of expressions in each language. \nsample_size: the number of languages to generate. \ncriterion: the predicate, (e.g. semantic universal) by which to split the expressions into those satisfying and those not, and then sample languages with degrees of naturalness based on the percentage from those satisfying. Must apply at the expression level. By default is a trivial criterion, so that all expressions are 'quasi-natural'. \nfixed_wordcount: whether to vary the language size from 1 to lang_size. \nverbose: How detailed the progress of sampling should be, printed to stdout. \ndummy_name: the default name to give to each sampled language, e.g. sampled_lang_42
. These should not collide with any actual natural language names if the efficient communication experiment does use natural language data. \nid_start: an integer representing the number of languages already generated in an experiment. Languages sampled will be named according to this number. For example, if id_start is 0, the first language sampled will be named sampled_lang_0
. Note that the largest id does not necessarily track the actual size of languages saved for the experiment, but it does track how many languages have been generated. \nexact_sample: a boolean representing whether to sample until the exact sample size is filled. If True, the resulting pool of languages may not be unique. \nverbose: a boolean representing how verbose output should be during sampling. \n \n\nReturns: \n\n\n a dict representing the generated pool of languages and the updated id_start, of the form
\n\n{\n \"languages\": (list of updated languages)\n \"id_start\": (updated length of languages)\n}\n
\n \n\nExamples: \n\n\n \n
>>> # Turn the knob on a universal property for modals \n>>> expressions = load_expressions ( expressions_file ) \n>>> universal_property = iff \n>>> result = generate_languages ( \n... ModalLanguage , \n... expressions , \n... lang_size , \n... sample_size , \n... universal_property , \n...) \n>>> languages = result [ "languages" ] \n>>> id_start = result [ "id_start" ] \n
\n
\n \n", "signature": "(\tlanguage_class : Type [ ultk . language . language . Language ] , \texpressions : list [ ultk . language . language . Expression ] , \tlang_size : int , \tsample_size : int , \tcriterion : Callable [[ ultk . language . language . Expression ], bool ] = < function < lambda >> , \tfixed_wordcount = False , \tdummy_name = 'sampled_lang_' , \tid_start : int = 0 , \texact_sample = False , \tverbose = False ) -> dict [ str , typing . Any ] : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling.sample_lang_size", "modulename": "ultk.language.sampling", "qualname": "sample_lang_size", "kind": "function", "doc": "Get a sample of languages each of exactly lang_size.
\n\nArguments: \n\n\nlanguage_class: a subclass of ultk.Language \nexpressions: a list of Expressions to sample from \nlang_size: int representing the maximum language size to sample \nsample_size: int representing the number of total languages to return \nid_start: an int representing the number of languages already generated in an experiment. \n \n\nReturns: \n\n\n a dict containing the randomly sampled languages and the updated id_start, of the form
\n\n{\n \"languages\": (list of updated languages)\n \"id_start\": (updated length of languages)\n}\n
\n \n", "signature": "(\tlanguage_class : Type [ ultk . language . language . Language ] , \texpressions : list [ ultk . language . language . Expression ] , \tlang_size : int , \tsample_size : int , \tid_start : int = 0 , \tverbose = False , \tdummy_name = 'sampled_lang_id' ) -> dict [ str , typing . Any ] : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling.sample_quasi_natural", "modulename": "ultk.language.sampling", "qualname": "sample_quasi_natural", "kind": "function", "doc": "Turn the knob on degree quasi-naturalness for a sample of languages, either by enumerating or randomly sampling unique subsets of all possible combinations.
\n\nArguments: \n\n\nnatural_terms: expressions satisfying some criteria of quasi-naturalness, e.g, a semantic universal. \nunnatural_terms: expressions not satisfying the criteria. \nlang_size: the exact number of expressions a language must have. \nsample_size: how many languages to sample. \n \n\nReturns: \n\n\n a dict containing the randomly sampled quasi-natural languages and the updated id_start, of the form
\n\n{\n \"languages\": (list of updated languages)\n \"id_start\": (updated length of languages)\n}\n
\n \n", "signature": "(\tlanguage_class : Type [ ultk . language . language . Language ] , \tnatural_terms : list [ ultk . language . language . Expression ] , \tunnatural_terms : list [ ultk . language . language . Expression ] , \tlang_size : int , \tsample_size : int , \tid_start : int , \tdummy_name = 'sampled_lang_id' , \tverbose = False ) -> dict [ str , typing . Any ] : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling.rename_id", "modulename": "ultk.language.sampling", "qualname": "rename_id", "kind": "function", "doc": "Updates a string of form sampled_lang_X
with a new id for X.
\n", "signature": "(name : str , id : int ) -> str : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling.enumerate_all_languages", "modulename": "ultk.language.sampling", "qualname": "enumerate_all_languages", "kind": "function", "doc": "When the sample size requested is greater than the size of all possible languages, just enumerate all the possible languages.
\n\nArguments: \n\n\nlanguage_class: the kind of Language to construct \nid_start: a number to start counting from for assigning names with numerical ids to languages. \nnatural_indices: the indices of quasi-natural languages already seen \nnum_natural: the number of quasi-natural languages to sample \nnatural_terms: the list of quasi-natural terms to sample from \nunnatural_indices: the indices of non-quasi-natural languages already seen \nnum_unnatural: the number of non-quasi-natural languages to sample; 0 by default \nunnatural_terms: the list of non-quasi-natural terms to sample from; empty by default. \ndummy_name: the format of the string to name each language constructed. \n \n\nReturns: \n\n\n a dict containing a set of languages and the updated id_start, of the form
\n\n{\n \"languages\": (list of updated languages)\n \"id_start\": (updated length of languages)\n}\n
\n \n", "signature": "(\tlanguage_class : Type [ ultk . language . language . Language ] , \tid_start : int , \tnatural_terms : list [ ultk . language . language . Expression ] , \tnatural_indices : list [ int ] , \tnum_natural : int = 0 , \tunnatural_terms : list [ ultk . language . language . Expression ] = [] , \tunnatural_indices : list [ int ] = [] , \tnum_unnatural : int = 0 , \tdummy_name = 'sampled_lang_id' , \tverbose = False ) -> dict [ str , typing . Any ] : ", "funcdef": "def"}, {"fullname": "ultk.language.sampling.random_combination_vocabulary", "modulename": "ultk.language.sampling", "qualname": "random_combination_vocabulary", "kind": "function", "doc": "Get a single vocabulary for a specific language size by choosing a random combination of natural and unnatural terms.
\n\nArguments: \n\n\nseen: the list of language indices already seen \nnum_natural: int \nnatural_terms: list[Expression] \nnum_unnatural: int=0 \nunnatural_terms: list[Expression]=[] \n \n\nReturns: \n\n\n languages: the extended list of input languages.
\n \n", "signature": "(\tseen : set , \tnum_natural : int , \tnatural_terms : list [ ultk . language . language . Expression ] , \tnum_unnatural : int = 0 , \tunnatural_terms : list [ ultk . language . language . Expression ] = [] ) -> list [ ultk . language . language . Expression ] : ", "funcdef": "def"}, {"fullname": "ultk.language.semantics", "modulename": "ultk.language.semantics", "kind": "module", "doc": "Classes for modeling the meanings of a language.
\n\nMeanings are modeled as things which map linguistic forms to objects of reference. The linguistic forms and objects of reference can in principle be very detailed, and future work may elaborate the meaning classes and implement a Form class.
\n\nIn efficient communication analyses, simplicity and informativeness can be measured as properties of semantic aspects of a language. E.g., a meaning is simple if it is easy to represent, or to compress into some code; a meaning is informative if it is easy for a listener to recover a speaker's intended literal meaning.
\n\nExamples: \n\n\n \n
>>> from ultk.language.semantics import Referent , Meaning , Universe \n>>> from ultk.language.language import Expression \n>>> # construct the meaning space for numerals \n>>> numerals_universe = NumeralUniverse ( referents = [ NumeralReferent ( str ( i )) for i in range ( 1 , 100 )]) \n>>> # construct a list of referents for the expression 'a few' \n>>> a_few_refs = [ NumeralReferent ( name = str ( i )) for i in range ( 2 , 6 )] \n>>> a_few_meaning = NumeralMeaning ( referents = a_few_refs , universe = numerals_universe ) \n>>> # define the expression \n>>> a_few = NumeralExpression ( form = "a few" , meaning = a_few_meaning ) \n
\n
\n \n"}, {"fullname": "ultk.language.semantics.Referent", "modulename": "ultk.language.semantics", "qualname": "Referent", "kind": "class", "doc": "A referent is some object in the universe for a language.
\n\nConceptually, a Referent can be any kind of object. This functions like a generic python object that is _immutable_ after initialization.\nAt initialization, properties can be specified either by passing a dictionary or by keyword arguments.
\n"}, {"fullname": "ultk.language.semantics.Referent.__init__", "modulename": "ultk.language.semantics", "qualname": "Referent.__init__", "kind": "function", "doc": "Initialize a referent.
\n\nArguments: \n\n\nname: a string representing the name of the referent \n \n", "signature": "(name : str , properties : dict [ str , typing . Any ] = {} , ** kwargs ) "}, {"fullname": "ultk.language.semantics.Referent.name", "modulename": "ultk.language.semantics", "qualname": "Referent.name", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.language.semantics.Universe", "modulename": "ultk.language.semantics", "qualname": "Universe", "kind": "class", "doc": "The universe is the collection of possible referent objects for a meaning.
\n"}, {"fullname": "ultk.language.semantics.Universe.__init__", "modulename": "ultk.language.semantics", "qualname": "Universe.__init__", "kind": "function", "doc": "
\n", "signature": "(\treferents : tuple [ ultk . language . semantics . Referent , ... ] , \tprior : tuple [ float , ... ] ) "}, {"fullname": "ultk.language.semantics.Universe.referents", "modulename": "ultk.language.semantics", "qualname": "Universe.referents", "kind": "variable", "doc": "
\n", "annotation": ": tuple[ultk.language.semantics.Referent, ...]"}, {"fullname": "ultk.language.semantics.Universe.prior", "modulename": "ultk.language.semantics", "qualname": "Universe.prior", "kind": "variable", "doc": "
\n", "annotation": ": tuple[float, ...]"}, {"fullname": "ultk.language.semantics.Universe.size", "modulename": "ultk.language.semantics", "qualname": "Universe.size", "kind": "variable", "doc": "
\n"}, {"fullname": "ultk.language.semantics.Universe.prior_numpy", "modulename": "ultk.language.semantics", "qualname": "Universe.prior_numpy", "kind": "variable", "doc": "
\n", "annotation": ": numpy.ndarray"}, {"fullname": "ultk.language.semantics.Universe.from_dataframe", "modulename": "ultk.language.semantics", "qualname": "Universe.from_dataframe", "kind": "function", "doc": "Build a Universe from a DataFrame.\nIt's assumed that each row specifies one Referent, and each column will be a property\nof that Referent. We assume that name
is one of the columns of the DataFrame.
\n\nArguments: \n\n\na DataFrame representing the meaning space of interest, assumed to have a column name
\n \n", "signature": "(cls , df : pandas . core . frame . DataFrame ): ", "funcdef": "def"}, {"fullname": "ultk.language.semantics.Universe.from_csv", "modulename": "ultk.language.semantics", "qualname": "Universe.from_csv", "kind": "function", "doc": "Build a Universe from a CSV file. This is a small wrapper around\nUniverse.from_dataframe
, so see that documentation for more information.
\n", "signature": "(cls , filename : str ): ", "funcdef": "def"}, {"fullname": "ultk.language.semantics.Meaning", "modulename": "ultk.language.semantics", "qualname": "Meaning", "kind": "class", "doc": "A meaning maps Referents to any type of object.
\n\nFor instance, sentence meanings are often modeled as sets of points (e.g. possible worlds).\nThese correspond to mappings from points (i.e. Referents) to truth values, corresponding to the characteristic function of a set.\nBut, in general, meanings can have a different output type for, e.g. sub-sentential meanings..
\n\nProperties: \n\n\n mapping: a FrozenDict
with Referent
keys, but arbitrary type T
as values.
\n \n universe: a Universe object. The Referent
s in the keys of mapping
are expected to be exactly those in universe
.
\n \n _dist: a mapping representing a probability distribution over referents to associate with the meaning. By default, will be assumed to be uniform over the \"true-like\" Referent
s in mapping
(see .dist
).
\n \n", "bases": "typing.Generic[~T]"}, {"fullname": "ultk.language.semantics.Meaning.__init__", "modulename": "ultk.language.semantics", "qualname": "Meaning.__init__", "kind": "function", "doc": "
\n", "signature": "(\tmapping : ultk . util . frozendict . FrozenDict [ ultk . language . semantics . Referent , ~ T ] , \tuniverse : ultk . language . semantics . Universe ) "}, {"fullname": "ultk.language.semantics.Meaning.mapping", "modulename": "ultk.language.semantics", "qualname": "Meaning.mapping", "kind": "variable", "doc": "
\n", "annotation": ": ultk.util.frozendict.FrozenDict[ultk.language.semantics.Referent, ~T]"}, {"fullname": "ultk.language.semantics.Meaning.universe", "modulename": "ultk.language.semantics", "qualname": "Meaning.universe", "kind": "variable", "doc": "
\n", "annotation": ": ultk.language.semantics.Universe"}, {"fullname": "ultk.language.semantics.Meaning.dist", "modulename": "ultk.language.semantics", "qualname": "Meaning.dist", "kind": "variable", "doc": "
\n", "annotation": ": ultk.util.frozendict.FrozenDict[ultk.language.semantics.Referent, float]"}, {"fullname": "ultk.language.semantics.Meaning.is_uniformly_false", "modulename": "ultk.language.semantics", "qualname": "Meaning.is_uniformly_false", "kind": "function", "doc": "Return True if all referents in the meaning are mapped to False (or coercible to False).In the case where the meaning type is boolean, this corresponds to the characteristic function of the empty set.
\n", "signature": "(self ) -> bool : ", "funcdef": "def"}, {"fullname": "ultk.util", "modulename": "ultk.util", "kind": "module", "doc": "Various utility classes and helper functions for the ULTK package.
\n\nSubmodules:
\n\n\nfrozendict
: An immutable dictionary, so that various mappings (e.g. Meaning
s) can be hashed, serialized, etc. \nio
: some basic input/output functions. \n \n"}, {"fullname": "ultk.util.frozendict", "modulename": "ultk.util.frozendict", "kind": "module", "doc": "
\n"}, {"fullname": "ultk.util.frozendict.FrozenDict", "modulename": "ultk.util.frozendict", "qualname": "FrozenDict", "kind": "class", "doc": "
\n", "bases": "dict[~K, ~V], typing.Generic[~K, ~V], yaml.YAMLObject"}, {"fullname": "ultk.util.frozendict.FrozenDict.clear", "modulename": "ultk.util.frozendict", "qualname": "FrozenDict.clear", "kind": "function", "doc": "D.clear() -> None. Remove all items from D.
\n", "signature": "(self ): ", "funcdef": "def"}, {"fullname": "ultk.util.frozendict.FrozenDict.pop", "modulename": "ultk.util.frozendict", "qualname": "FrozenDict.pop", "kind": "function", "doc": "D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
\n\nIf the key is not found, return the default if given; otherwise,\nraise a KeyError.
\n", "signature": "(self , key , default = None ): ", "funcdef": "def"}, {"fullname": "ultk.util.frozendict.FrozenDict.popitem", "modulename": "ultk.util.frozendict", "qualname": "FrozenDict.popitem", "kind": "function", "doc": "Remove and return a (key, value) pair as a 2-tuple.
\n\nPairs are returned in LIFO (last-in, first-out) order.\nRaises KeyError if the dict is empty.
\n", "signature": "(self ): ", "funcdef": "def"}, {"fullname": "ultk.util.frozendict.FrozenDict.setdefault", "modulename": "ultk.util.frozendict", "qualname": "FrozenDict.setdefault", "kind": "function", "doc": "Insert key with a value of default if key is not in the dictionary.
\n\nReturn the value for key if key is in the dictionary, else default.
\n", "signature": "(self , key , default = None ): ", "funcdef": "def"}, {"fullname": "ultk.util.frozendict.FrozenDict.update", "modulename": "ultk.util.frozendict", "qualname": "FrozenDict.update", "kind": "function", "doc": "D.update([E, ]**F) -> None. Update D from dict/iterable E and F.\nIf E is present and has a .keys() method, then does: for k in E: D[k] = E[k]\nIf E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v\nIn either case, this is followed by: for k in F: D[k] = F[k]
\n", "signature": "(self , * args , ** kwargs ): ", "funcdef": "def"}, {"fullname": "ultk.util.io", "modulename": "ultk.util.io", "kind": "module", "doc": "
\n"}, {"fullname": "ultk.util.io.write_expressions", "modulename": "ultk.util.io", "qualname": "write_expressions", "kind": "function", "doc": "Write expressions to a YAML file.
\n\nThis is particularly useful for writing GrammaticalExpressions, which have a func
field that can't be serialized. This function uses to_dict
to determine which properties of the Expression to write.
\n\nArguments: \n\n\nexpressions: the expressions to write \nfilename: the file to write to \n \n", "signature": "(\texpressions : Iterable [ ultk . language . language . Expression ] , \tfilename : str ) -> None : ", "funcdef": "def"}, {"fullname": "ultk.util.io.read_grammatical_expressions", "modulename": "ultk.util.io", "qualname": "read_grammatical_expressions", "kind": "function", "doc": "Read grammatical expressions from a YAML file.
\n\nOptionally re-parse and (re-)evaluate the expressions using the provided grammar and universe.
\n\nArguments: \n\n\nfilename: the file to read \ngrammar: the grammar to use for parsing (and for re-populating the .func
attribute of each GrammaticalExpression) \nre_parse: whether to re-parse the expressions \nuniverse: the universe to use for evaluation \nreturn_by_meaning: whether to return a dictionary mapping meanings to expressions or not \n \n\nReturns: \n\n\n a list of GrammaticalExpressions and a dictionary mapping meanings to expressions (empty if return_by_meaning
is False)
\n \n", "signature": "(\tfilename : str , \tgrammar : ultk . language . grammar . Grammar , \tre_parse : bool = False , \tuniverse : ultk . language . semantics . Universe | None = None , \treturn_by_meaning = True ) -> tuple [ list [ ultk . language . grammar . GrammaticalExpression ], dict [ ultk . language . semantics . Meaning , ultk . language . grammar . GrammaticalExpression ]] : ", "funcdef": "def"}, {"fullname": "ultk.util.io.write_pickle", "modulename": "ultk.util.io", "qualname": "write_pickle", "kind": "function", "doc": "
\n", "signature": "(fn : str , data ): ", "funcdef": "def"}, {"fullname": "ultk.util.io.read_pickle", "modulename": "ultk.util.io", "qualname": "read_pickle", "kind": "function", "doc": "
\n", "signature": "(fn : str ): ", "funcdef": "def"}];
// mirrored in build-search-index.js (part 1)
// Also split on html tags. this is a cheap heuristic, but good enough.
diff --git a/docs/ultk.html b/docs/ultk.html
index 2db877d..6c71f5a 100644
--- a/docs/ultk.html
+++ b/docs/ultk.html
@@ -3,14 +3,14 @@
-
+
ultk API documentation
-
+
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+ultk .effcomm .information_bottleneck
+
+ Submodule for Information Bottleneck based analyses of the efficiency of semantic category systems.
+
+
The ultk.effcomm.information_bottleneck.modeling
includes a friendly API for obtaining IB theoretical bounds and naming models given a specification of the statistics of the semantic domain. This is likely the only submodule you need to import.
+
+
The ultk.effcomm.information_bottlneck.ib
implements the IB update equations, and includes an optimizer object that inherits from the base object in ba
.
+
+
The ultk.effcomm.information_bottleneck.ba
submodule implements the Blahut-Arimoto algorithm for computing the theoretical bounds of efficient compression. It includes code for simulated annealing (reverse or not) of $\beta$.
+
+
The ultk.effcomm.information_bottleneck.tools
submodule includes helper methods for computing informational quantities and dealing with numerical instability.
+
+
+
+
+ View Source
+
+ 1 """Submodule for Information Bottleneck based analyses of the efficiency of semantic category systems.
+ 2
+ 3 The `ultk.effcomm.information_bottleneck.modeling` includes a friendly API for obtaining IB theoretical bounds and naming models given a specification of the statistics of the semantic domain. This is likely the only submodule you need to import.
+ 4
+ 5 The `ultk.effcomm.information_bottlneck.ib` implements the IB update equations, and includes an optimizer object that inherits from the base object in `ba`.
+ 6
+ 7 The `ultk.effcomm.information_bottleneck.ba` submodule implements the Blahut-Arimoto algorithm for computing the theoretical bounds of efficient compression. It includes code for simulated annealing (reverse or not) of $\\beta$.
+ 8
+ 9 The `ultk.effcomm.information_bottleneck.tools` submodule includes helper methods for computing informational quantities and dealing with numerical instability.
+10 """
+
+
+
+
+
+
+