-
Notifications
You must be signed in to change notification settings - Fork 185
/
ResultMerge.py
168 lines (152 loc) · 5.81 KB
/
ResultMerge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
To use the code, users should to config detpath, annopath and imagesetfile
detpath is the path for 15 result files, for the format, you can refer to "http://captain.whu.edu.cn/DOTAweb/tasks.html"
search for PATH_TO_BE_CONFIGURED to config the paths
Note, the evaluation is on the large scale images
"""
import os
import numpy as np
import dota_utils as util
import re
import time
import polyiou
## the thresh for nms when merge image
nms_thresh = 0.3
def py_cpu_nms_poly(dets, thresh):
scores = dets[:, 8]
polys = []
areas = []
for i in range(len(dets)):
tm_polygon = polyiou.VectorDouble([dets[i][0], dets[i][1],
dets[i][2], dets[i][3],
dets[i][4], dets[i][5],
dets[i][6], dets[i][7]])
polys.append(tm_polygon)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
ovr = []
i = order[0]
keep.append(i)
for j in range(order.size - 1):
iou = polyiou.iou_poly(polys[i], polys[order[j + 1]])
ovr.append(iou)
ovr = np.array(ovr)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
#print('dets:', dets)
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
## index for dets
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def nmsbynamedict(nameboxdict, nms, thresh):
nameboxnmsdict = {x: [] for x in nameboxdict}
for imgname in nameboxdict:
#print('imgname:', imgname)
#keep = py_cpu_nms(np.array(nameboxdict[imgname]), thresh)
#print('type nameboxdict:', type(nameboxnmsdict))
#print('type imgname:', type(imgname))
#print('type nms:', type(nms))
keep = nms(np.array(nameboxdict[imgname]), thresh)
#print('keep:', keep)
outdets = []
#print('nameboxdict[imgname]: ', nameboxnmsdict[imgname])
for index in keep:
# print('index:', index)
outdets.append(nameboxdict[imgname][index])
nameboxnmsdict[imgname] = outdets
return nameboxnmsdict
def poly2origpoly(poly, x, y, rate):
origpoly = []
for i in range(int(len(poly)/2)):
tmp_x = float(poly[i * 2] + x) / float(rate)
tmp_y = float(poly[i * 2 + 1] + y) / float(rate)
origpoly.append(tmp_x)
origpoly.append(tmp_y)
return origpoly
def mergebase(srcpath, dstpath, nms):
filelist = util.GetFileFromThisRootDir(srcpath)
for fullname in filelist:
name = util.custombasename(fullname)
#print('name:', name)
dstname = os.path.join(dstpath, name + '.txt')
with open(fullname, 'r') as f_in:
nameboxdict = {}
lines = f_in.readlines()
splitlines = [x.strip().split(' ') for x in lines]
for splitline in splitlines:
subname = splitline[0]
splitname = subname.split('__')
oriname = splitname[0]
pattern1 = re.compile(r'__\d+___\d+')
#print('subname:', subname)
x_y = re.findall(pattern1, subname)
x_y_2 = re.findall(r'\d+', x_y[0])
x, y = int(x_y_2[0]), int(x_y_2[1])
pattern2 = re.compile(r'__([\d+\.]+)__\d+___')
rate = re.findall(pattern2, subname)[0]
confidence = splitline[1]
poly = list(map(float, splitline[2:]))
origpoly = poly2origpoly(poly, x, y, rate)
det = origpoly
det.append(confidence)
det = list(map(float, det))
if (oriname not in nameboxdict):
nameboxdict[oriname] = []
nameboxdict[oriname].append(det)
nameboxnmsdict = nmsbynamedict(nameboxdict, nms, nms_thresh)
with open(dstname, 'w') as f_out:
for imgname in nameboxnmsdict:
for det in nameboxnmsdict[imgname]:
#print('det:', det)
confidence = det[-1]
bbox = det[0:-1]
outline = imgname + ' ' + str(confidence) + ' ' + ' '.join(map(str, bbox))
#print('outline:', outline)
f_out.write(outline + '\n')
def mergebyrec(srcpath, dstpath):
"""
srcpath: result files before merge and nms
dstpath: result files after merge and nms
"""
# srcpath = r'E:\bod-dataset\results\bod-v3_rfcn_2000000'
# dstpath = r'E:\bod-dataset\results\bod-v3_rfcn_2000000_nms'
mergebase(srcpath,
dstpath,
py_cpu_nms)
def mergebypoly(srcpath, dstpath):
"""
srcpath: result files before merge and nms
dstpath: result files after merge and nms
"""
# srcpath = r'/home/dingjian/evaluation_task1/result/faster-rcnn-59/comp4_test_results'
# dstpath = r'/home/dingjian/evaluation_task1/result/faster-rcnn-59/testtime'
mergebase(srcpath,
dstpath,
py_cpu_nms_poly)
if __name__ == '__main__':
# see demo for example
mergebypoly(r'path_to_configure', r'path_to_configure')
# mergebyrec()