-
Notifications
You must be signed in to change notification settings - Fork 185
/
ImgSplit_multi_process.py
301 lines (276 loc) · 11.8 KB
/
ImgSplit_multi_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
"""
-------------
This is the multi-process version
"""
import os
import codecs
import numpy as np
import math
from dota_utils import GetFileFromThisRootDir
import cv2
import shapely.geometry as shgeo
import dota_utils as util
import copy
from multiprocessing import Pool
from functools import partial
import time
def choose_best_pointorder_fit_another(poly1, poly2):
"""
To make the two polygons best fit with each point
"""
x1 = poly1[0]
y1 = poly1[1]
x2 = poly1[2]
y2 = poly1[3]
x3 = poly1[4]
y3 = poly1[5]
x4 = poly1[6]
y4 = poly1[7]
combinate = [np.array([x1, y1, x2, y2, x3, y3, x4, y4]), np.array([x2, y2, x3, y3, x4, y4, x1, y1]),
np.array([x3, y3, x4, y4, x1, y1, x2, y2]), np.array([x4, y4, x1, y1, x2, y2, x3, y3])]
dst_coordinate = np.array(poly2)
distances = np.array([np.sum((coord - dst_coordinate)**2) for coord in combinate])
sorted = distances.argsort()
return combinate[sorted[0]]
def cal_line_length(point1, point2):
return math.sqrt( math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1], 2))
def split_single_warp(name, split_base, rate, extent):
split_base.SplitSingle(name, rate, extent)
class splitbase():
def __init__(self,
basepath,
outpath,
code = 'utf-8',
gap=512,
subsize=1024,
thresh=0.7,
choosebestpoint=True,
ext = '.png',
padding=True,
num_process=8
):
"""
:param basepath: base path for dota data
:param outpath: output base path for dota data,
the basepath and outputpath have the similar subdirectory, 'images' and 'labelTxt'
:param code: encodeing format of txt file
:param gap: overlap between two patches
:param subsize: subsize of patch
:param thresh: the thresh determine whether to keep the instance if the instance is cut down in the process of split
:param choosebestpoint: used to choose the first point for the
:param ext: ext for the image format
:param padding: if to padding the images so that all the images have the same size
"""
self.basepath = basepath
self.outpath = outpath
self.code = code
self.gap = gap
self.subsize = subsize
self.slide = self.subsize - self.gap
self.thresh = thresh
self.imagepath = os.path.join(self.basepath, 'images')
self.labelpath = os.path.join(self.basepath, 'labelTxt')
self.outimagepath = os.path.join(self.outpath, 'images')
self.outlabelpath = os.path.join(self.outpath, 'labelTxt')
self.choosebestpoint = choosebestpoint
self.ext = ext
self.padding = padding
self.num_process = num_process
self.pool = Pool(num_process)
print('padding:', padding)
# pdb.set_trace()
if not os.path.isdir(self.outpath):
os.mkdir(self.outpath)
if not os.path.isdir(self.outimagepath):
# pdb.set_trace()
os.mkdir(self.outimagepath)
if not os.path.isdir(self.outlabelpath):
os.mkdir(self.outlabelpath)
# pdb.set_trace()
## point: (x, y), rec: (xmin, ymin, xmax, ymax)
# def __del__(self):
# self.f_sub.close()
## grid --> (x, y) position of grids
def polyorig2sub(self, left, up, poly):
polyInsub = np.zeros(len(poly))
for i in range(int(len(poly)/2)):
polyInsub[i * 2] = int(poly[i * 2] - left)
polyInsub[i * 2 + 1] = int(poly[i * 2 + 1] - up)
return polyInsub
def calchalf_iou(self, poly1, poly2):
"""
It is not the iou on usual, the iou is the value of intersection over poly1
"""
inter_poly = poly1.intersection(poly2)
inter_area = inter_poly.area
poly1_area = poly1.area
half_iou = inter_area / poly1_area
return inter_poly, half_iou
def saveimagepatches(self, img, subimgname, left, up):
subimg = copy.deepcopy(img[up: (up + self.subsize), left: (left + self.subsize)])
outdir = os.path.join(self.outimagepath, subimgname + self.ext)
h, w, c = np.shape(subimg)
if (self.padding):
outimg = np.zeros((self.subsize, self.subsize, 3))
outimg[0:h, 0:w, :] = subimg
cv2.imwrite(outdir, outimg)
else:
cv2.imwrite(outdir, subimg)
def GetPoly4FromPoly5(self, poly):
distances = [cal_line_length((poly[i * 2], poly[i * 2 + 1] ), (poly[(i + 1) * 2], poly[(i + 1) * 2 + 1])) for i in range(int(len(poly)/2 - 1))]
distances.append(cal_line_length((poly[0], poly[1]), (poly[8], poly[9])))
pos = np.array(distances).argsort()[0]
count = 0
outpoly = []
while count < 5:
#print('count:', count)
if (count == pos):
outpoly.append((poly[count * 2] + poly[(count * 2 + 2)%10])/2)
outpoly.append((poly[(count * 2 + 1)%10] + poly[(count * 2 + 3)%10])/2)
count = count + 1
elif (count == (pos + 1)%5):
count = count + 1
continue
else:
outpoly.append(poly[count * 2])
outpoly.append(poly[count * 2 + 1])
count = count + 1
return outpoly
def savepatches(self, resizeimg, objects, subimgname, left, up, right, down):
outdir = os.path.join(self.outlabelpath, subimgname + '.txt')
mask_poly = []
imgpoly = shgeo.Polygon([(left, up), (right, up), (right, down),
(left, down)])
with codecs.open(outdir, 'w', self.code) as f_out:
for obj in objects:
gtpoly = shgeo.Polygon([(obj['poly'][0], obj['poly'][1]),
(obj['poly'][2], obj['poly'][3]),
(obj['poly'][4], obj['poly'][5]),
(obj['poly'][6], obj['poly'][7])])
if (gtpoly.area <= 0):
continue
inter_poly, half_iou = self.calchalf_iou(gtpoly, imgpoly)
# print('writing...')
if (half_iou == 1):
polyInsub = self.polyorig2sub(left, up, obj['poly'])
outline = ' '.join(list(map(str, polyInsub)))
outline = outline + ' ' + obj['name'] + ' ' + str(obj['difficult'])
f_out.write(outline + '\n')
elif (half_iou > 0):
#elif (half_iou > self.thresh):
## print('<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<')
inter_poly = shgeo.polygon.orient(inter_poly, sign=1)
out_poly = list(inter_poly.exterior.coords)[0: -1]
if len(out_poly) < 4:
continue
out_poly2 = []
for i in range(len(out_poly)):
out_poly2.append(out_poly[i][0])
out_poly2.append(out_poly[i][1])
if (len(out_poly) == 5):
#print('==========================')
out_poly2 = self.GetPoly4FromPoly5(out_poly2)
elif (len(out_poly) > 5):
"""
if the cut instance is a polygon with points more than 5, we do not handle it currently
"""
continue
if (self.choosebestpoint):
out_poly2 = choose_best_pointorder_fit_another(out_poly2, obj['poly'])
polyInsub = self.polyorig2sub(left, up, out_poly2)
for index, item in enumerate(polyInsub):
if (item <= 1):
polyInsub[index] = 1
elif (item >= self.subsize):
polyInsub[index] = self.subsize
outline = ' '.join(list(map(str, polyInsub)))
if (half_iou > self.thresh):
outline = outline + ' ' + obj['name'] + ' ' + str(obj['difficult'])
else:
## if the left part is too small, label as '2'
outline = outline + ' ' + obj['name'] + ' ' + '2'
f_out.write(outline + '\n')
#else:
# mask_poly.append(inter_poly)
self.saveimagepatches(resizeimg, subimgname, left, up)
def SplitSingle(self, name, rate, extent):
"""
split a single image and ground truth
:param name: image name
:param rate: the resize scale for the image
:param extent: the image format
:return:
"""
img = cv2.imread(os.path.join(self.imagepath, name + extent))
if np.shape(img) == ():
return
fullname = os.path.join(self.labelpath, name + '.txt')
objects = util.parse_dota_poly2(fullname)
for obj in objects:
obj['poly'] = list(map(lambda x:rate*x, obj['poly']))
#obj['poly'] = list(map(lambda x: ([2 * y for y in x]), obj['poly']))
if (rate != 1):
resizeimg = cv2.resize(img, None, fx=rate, fy=rate, interpolation = cv2.INTER_CUBIC)
else:
resizeimg = img
outbasename = name + '__' + str(rate) + '__'
weight = np.shape(resizeimg)[1]
height = np.shape(resizeimg)[0]
left, up = 0, 0
while (left < weight):
if (left + self.subsize >= weight):
left = max(weight - self.subsize, 0)
up = 0
while (up < height):
if (up + self.subsize >= height):
up = max(height - self.subsize, 0)
right = min(left + self.subsize, weight - 1)
down = min(up + self.subsize, height - 1)
subimgname = outbasename + str(left) + '___' + str(up)
# self.f_sub.write(name + ' ' + subimgname + ' ' + str(left) + ' ' + str(up) + '\n')
self.savepatches(resizeimg, objects, subimgname, left, up, right, down)
if (up + self.subsize >= height):
break
else:
up = up + self.slide
if (left + self.subsize >= weight):
break
else:
left = left + self.slide
def splitdata(self, rate):
"""
:param rate: resize rate before cut
"""
imagelist = GetFileFromThisRootDir(self.imagepath)
imagenames = [util.custombasename(x) for x in imagelist if (util.custombasename(x) != 'Thumbs')]
if self.num_process == 1:
for name in imagenames:
self.SplitSingle(name, rate, self.ext)
else:
# worker = partial(self.SplitSingle, rate=rate, extent=self.ext)
worker = partial(split_single_warp, split_base=self, rate=rate, extent=self.ext)
self.pool.map(worker, imagenames)
def __getstate__(self):
self_dict = self.__dict__.copy()
del self_dict['pool']
return self_dict
def __setstate__(self, state):
self.__dict__.update(state)
if __name__ == '__main__':
# example usage of ImgSplit
# start = time.clock()
# split = splitbase(r'/data/dj/dota/val',
# r'/data/dj/dota/val_1024_debugmulti-process_refactor') # time cost 19s
# # split.splitdata(1)
# # split.splitdata(2)
# split.splitdata(0.4)
#
# elapsed = (time.clock() - start)
# print("Time used:", elapsed)
split = splitbase(r'/home/dingjian/data/dota/val',
r'/home/dingjian/data/dota/valsplit',
gap=200,
subsize=1024,
num_process=8
)
split.splitdata(1)