forked from isaac-sim/OmniIsaacGymEnvs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcartpole.py
165 lines (132 loc) · 6.81 KB
/
cartpole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.cartpole import Cartpole
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.utils.prims import get_prim_at_path
import numpy as np
import torch
import math
class CartpoleTask(RLTask):
def __init__(
self,
name,
sim_config,
env,
offset=None
) -> None:
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._cartpole_positions = torch.tensor([0.0, 0.0, 2.0])
self._reset_dist = self._task_cfg["env"]["resetDist"]
self._max_push_effort = self._task_cfg["env"]["maxEffort"]
self._max_episode_length = 500
self._num_observations = 4
self._num_actions = 1
RLTask.__init__(self, name, env)
return
def set_up_scene(self, scene) -> None:
self.get_cartpole()
super().set_up_scene(scene)
self._cartpoles = ArticulationView(prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False)
scene.add(self._cartpoles)
return
def get_cartpole(self):
cartpole = Cartpole(prim_path=self.default_zero_env_path + "/Cartpole", name="Cartpole", translation=self._cartpole_positions)
# applies articulation settings from the task configuration yaml file
self._sim_config.apply_articulation_settings("Cartpole", get_prim_at_path(cartpole.prim_path), self._sim_config.parse_actor_config("Cartpole"))
def get_observations(self) -> dict:
dof_pos = self._cartpoles.get_joint_positions(clone=False)
dof_vel = self._cartpoles.get_joint_velocities(clone=False)
cart_pos = dof_pos[:, self._cart_dof_idx]
cart_vel = dof_vel[:, self._cart_dof_idx]
pole_pos = dof_pos[:, self._pole_dof_idx]
pole_vel = dof_vel[:, self._pole_dof_idx]
self.obs_buf[:, 0] = cart_pos
self.obs_buf[:, 1] = cart_vel
self.obs_buf[:, 2] = pole_pos
self.obs_buf[:, 3] = pole_vel
observations = {
self._cartpoles.name: {
"obs_buf": self.obs_buf
}
}
return observations
def pre_physics_step(self, actions) -> None:
if not self._env._world.is_playing():
return
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
actions = actions.to(self._device)
forces = torch.zeros((self._cartpoles.count, self._cartpoles.num_dof), dtype=torch.float32, device=self._device)
forces[:, self._cart_dof_idx] = self._max_push_effort * actions[:, 0]
indices = torch.arange(self._cartpoles.count, dtype=torch.int32, device=self._device)
self._cartpoles.set_joint_efforts(forces, indices=indices)
def reset_idx(self, env_ids):
num_resets = len(env_ids)
# randomize DOF positions
dof_pos = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device)
dof_pos[:, self._cart_dof_idx] = 1.0 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device))
dof_pos[:, self._pole_dof_idx] = 0.125 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device))
# randomize DOF velocities
dof_vel = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device)
dof_vel[:, self._cart_dof_idx] = 0.5 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device))
dof_vel[:, self._pole_dof_idx] = 0.25 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device))
# apply resets
indices = env_ids.to(dtype=torch.int32)
self._cartpoles.set_joint_positions(dof_pos, indices=indices)
self._cartpoles.set_joint_velocities(dof_vel, indices=indices)
# bookkeeping
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def post_reset(self):
self._cart_dof_idx = self._cartpoles.get_dof_index("cartJoint")
self._pole_dof_idx = self._cartpoles.get_dof_index("poleJoint")
# randomize all envs
indices = torch.arange(self._cartpoles.count, dtype=torch.int64, device=self._device)
self.reset_idx(indices)
def calculate_metrics(self) -> None:
cart_pos = self.obs_buf[:, 0]
cart_vel = self.obs_buf[:, 1]
pole_angle = self.obs_buf[:, 2]
pole_vel = self.obs_buf[:, 3]
reward = 1.0 - pole_angle * pole_angle - 0.01 * torch.abs(cart_vel) - 0.005 * torch.abs(pole_vel)
reward = torch.where(torch.abs(cart_pos) > self._reset_dist, torch.ones_like(reward) * -2.0, reward)
reward = torch.where(torch.abs(pole_angle) > np.pi / 2, torch.ones_like(reward) * -2.0, reward)
self.rew_buf[:] = reward
def is_done(self) -> None:
cart_pos = self.obs_buf[:, 0]
pole_pos = self.obs_buf[:, 2]
resets = torch.where(torch.abs(cart_pos) > self._reset_dist, 1, 0)
resets = torch.where(torch.abs(pole_pos) > math.pi / 2, 1, resets)
resets = torch.where(self.progress_buf >= self._max_episode_length, 1, resets)
self.reset_buf[:] = resets