-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsmoke.cpp
465 lines (385 loc) · 14.8 KB
/
smoke.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
char version[] = "DataSmoker 0.3 2014-02-12";
char copyright[] = "Developed by Bulat Ziganshin\n"
"The code is placed in public domain\n";
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <limits.h>
#include <ctype.h>
#define kb 1024
#define mb (1024*kb)
#define gb (1024*mb)
typedef unsigned char byte;
class Entropy
{
public:
virtual const char* name() = 0;
virtual ~Entropy() {}
virtual void smoke (void *buf, size_t bufsize, double *entropy) = 0;
};
// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// CRC hashing **************************************************************************************************************************************
// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#if GCC_VERSION >= 403
// Requires GCC4.3 and SSE4.2-enabled CPU; and of course compatible only with Crc32CastagnoliPolynom
#include <x86intrin.h>
#include <cpuid.h>
uint32_t a_mm_crc32_u32(uint32_t crc, uint32_t value) {
asm("crc32l %[value], %[crc]\n" : [crc] "+r" (crc) : [value] "rm" (value));
return crc;
}
uint32_t hash_function (uint32_t x)
{
return a_mm_crc32_u32(0xFFFFFFFF,x);
}
uint32_t hash_function (uint64_t x)
{
return a_mm_crc32_u32(a_mm_crc32_u32(0xFFFFFFFF,uint32_t(x>>32)),uint32_t(x));
}
bool crc32c() /* Check CPU for CRC32c asm instruction support (part of SSE4.2) */
{
uint32_t eax, ebx, ecx, edx;
__get_cpuid(1, &eax, &ebx, &ecx, &edx);
return (ecx & bit_SSE4_2) != 0;
}
#else // non-GCC compilers
uint32_t hash_function (uint32_t x)
{
uint64_t hash = x * uint64_t(123456791u);
return uint32_t(hash>>32) ^ uint32_t(hash);
}
uint32_t hash_function (uint64_t x)
{
return hash_function( hash_function(uint32_t(x>>32)) ^ uint32_t(x) );
}
#endif
/**************************************************************************/
/* Byte entropy: calculate compression ratio with the 8-bit order-0 model */
/**************************************************************************/
class ByteEntropy : public Entropy
{
public:
virtual const char* name() {return "Byte entropy";};
virtual void smoke (void *buf, size_t bufsize, double *entropy);
};
void ByteEntropy::smoke (void *buf, size_t bufsize, double *entropy)
{
size_t count1[256] = {0};
size_t count2[256] = {0};
size_t count3[256] = {0};
size_t count4[256] = {0};
byte *p = (byte*) buf; int i;
for (i=0; i<bufsize-3; i+=4)
count1[ p[i] ]++,
count2[ p[i+1] ]++,
count3[ p[i+2] ]++,
count4[ p[i+3] ]++;
for (; i<bufsize; i++)
count1[ p[i] ]++;
double order0 = 0;
for (int i=0; i<256; i++)
{
size_t count = count1[i] + count2[i] + count3[i] + count4[i];
if (count)
order0 += count * log(double(bufsize)/count)/log(double(2)) / 8;
}
*entropy = order0 / bufsize;
}
/***************************************************************************/
/* Word entropy: calculate compression ratio with the 16-bit order-0 model */
/***************************************************************************/
class WordEntropy : public Entropy
{
uint32_t *count;
public:
WordEntropy() {count = new uint32_t[256*256];}
virtual const char* name() {return "Word entropy";};
virtual ~WordEntropy() {delete[] count;}
virtual void smoke (void *buf, size_t bufsize, double *entropy);
};
void WordEntropy::smoke (void *buf, size_t bufsize, double *entropy)
{
memset (count, 0, 256*256*sizeof(*count));
byte *p = (byte*) buf;
for (int i=0; i<bufsize-1; i++)
count[ *(unsigned*)(p+i) & 0xFFFF ]++;
double order0 = 0;
for (int i=0; i<256*256; i++)
{
if (count[i])
order0 += count[i] * log(double(bufsize)/count[i])/log(double(2)) / 16;
}
*entropy = order0 / bufsize;
}
/**********************************************************************************/
/* Order-1 byte entropy: calculate compression ratio with the 8-bit order-1 model */
/**********************************************************************************/
class Order1Entropy : public Entropy
{
uint32_t *count;
public:
Order1Entropy() {count = new uint32_t[256*256];}
virtual const char* name() {return "Order-1 byte entropy";};
virtual ~Order1Entropy() {delete[] count;}
virtual void smoke (void *buf, size_t bufsize, double *entropy);
};
void Order1Entropy::smoke (void *buf, size_t bufsize, double *entropy)
{
memset (count, 0, 256*256*sizeof(*count));
byte *p = (byte*) buf;
for (int i=0; i<bufsize-1; i++)
count[ *(unsigned*)(p+i) & 0xFFFF ]++;
double order1 = 0;
for (int i=0; i<256; i++)
{
size_t total = 0;
for (int j=0; j<256; j++)
total += count[i*256+j];
if (total)
for (int j=0; j<256; j++)
if (count[i*256+j])
order1 += count[i*256+j] * log(double(total)/count[i*256+j])/log(double(2)) / 8;
}
*entropy = order1 / bufsize;
}
/*********************************************************************************************************/
/* DWord hash entropy: calculate compression ratio with the 16-bit hashes of 32-bit values order-0 model */
/*********************************************************************************************************/
class DWordHashEntropy : public Entropy
{
static const size_t HASHSIZE = 256*256;
uint32_t *count;
public:
DWordHashEntropy() {count = new uint32_t[HASHSIZE];}
virtual const char* name() {return "DWord hash entropy";}
virtual ~DWordHashEntropy() {delete[] count;}
virtual void smoke (void *buf, size_t bufsize, double *entropy);
};
void DWordHashEntropy::smoke (void *buf, size_t bufsize, double *entropy)
{
const size_t STEP = 1; // Check only one of every STEP positions
byte *p = (byte*) buf;
memset(count,0,HASHSIZE*sizeof(*count));
for (size_t i=0; i<=bufsize-sizeof(uint32_t); i+=STEP)
{
uint32_t hash = hash_function(*(uint32_t*)(p+i));
count[(hash+hash/HASHSIZE)%HASHSIZE]++;
}
double order0 = 0;
for (int i=0; i<HASHSIZE; i++)
{
if (count[i])
order0 += count[i] * log(double(bufsize)/count[i])/log(double(2)) / 16;
}
*entropy = order0 / bufsize;
}
/***************************************************************************/
/* DWord coverage: calculate which part of 32-bit dwords are unique */
/***************************************************************************/
class DWordCoverage : public Entropy
{
static const size_t HASHSIZE = 2*mb; // it should be small enough to fit in most CPU last-level caches
byte *table;
size_t bits[256];
public:
DWordCoverage();
virtual const char* name() {return "DWord coverage";};
virtual ~DWordCoverage() {delete[] table;}
virtual void smoke (void *buf, size_t bufsize, double *entropy);
};
DWordCoverage::DWordCoverage()
{
table = new byte[HASHSIZE];
bits[0] = 0;
for (int i=1; i<256; i++)
bits[i] = bits[i/2] + (i%2);
}
void DWordCoverage::smoke (void *buf, size_t bufsize, double *entropy)
{
const size_t STEP = 1; // Check only every n'th position
const uint32_t FILTER = 16; // Of those checked, count only every n'th hash
const uint32_t FILTER_MAX_HASH = uint32_t(-1) / FILTER; // Count only hashes smaller or equal to this value
const uint32_t FILTER_HASH_DIVIDER = (FILTER_MAX_HASH / CHAR_BIT) + 1; // Dividing filtered hashes by this value will leave only 3 highest bits required to address bit in the byte
memset(table,0,HASHSIZE);
byte *p = (byte*) buf;
size_t total_hashes = 0;
for (size_t i=0; i<=bufsize-sizeof(uint32_t); i+=STEP)
{
uint32_t hash = hash_function(*(uint32_t*)(p+i));
if (hash <= FILTER_MAX_HASH)
total_hashes++,
table[hash % HASHSIZE] |= 1 << (hash/FILTER_HASH_DIVIDER);
}
if (total_hashes==0)
{*entropy=0; return;}
size_t unique_hashes = 0;
for (size_t i=0; i<HASHSIZE; i++)
unique_hashes += bits[table[i]];
// Coverage is ratio of unique hashes to the total amount of hashes checked
*entropy = double(unique_hashes) / total_hashes;
}
/***************************************************************************/
/* 2-pass hash coverage: select the most populated sector and then */
/* calculate which part of 32/64-bit words in the sector are unique */
/***************************************************************************/
template <class hash_t>
class TwoPassHashCoverage : public Entropy
{
static const size_t HASHSIZE = 2*mb; // it should be small enough to fit in most CPU last-level caches
byte *table;
size_t bits[256];
public:
TwoPassHashCoverage();
virtual const char* name() {return sizeof(hash_t)==4? "2-pass DWord coverage" : "2-pass QWord coverage";};
virtual ~TwoPassHashCoverage() {delete[] table;}
virtual void smoke (void *buf, size_t bufsize, double *entropy);
};
template <class hash_t>
TwoPassHashCoverage<hash_t>::TwoPassHashCoverage()
{
table = new byte[HASHSIZE];
bits[0] = 0;
for (int i=1; i<256; i++)
bits[i] = bits[i/2] + (i%2);
}
template <class hash_t>
void TwoPassHashCoverage<hash_t>::smoke (void *buf, size_t bufsize, double *entropy)
{
const size_t STEP = 1; // Check only one of every STEP positions
const size_t MAX_SECTORS = 8192;
uint32_t sector_cnt[MAX_SECTORS] = {0};
byte *p = (byte*) buf;
uint32_t sectors = bufsize/(256*kb), sectors_log = 0;
if (sectors > MAX_SECTORS) sectors = MAX_SECTORS;
while (sectors>1) sectors/=2, sectors_log++;
sectors = 1<<sectors_log;
uint32_t sectors_mask = sectors-1;
// 1st pass: count hashes in each sector
for (size_t i=0; i<=bufsize-sizeof(hash_t); i+=STEP)
{
uint32_t hash = hash_function(*(hash_t*)(p+i));
sector_cnt[hash & sectors_mask]++;
}
// Find the most populated sector
uint32_t sector=0, total_hashes=0;
for (uint32_t i=0; i<sectors; i++)
if (sector_cnt[i] > total_hashes)
sector=i, total_hashes=sector_cnt[i];
// 2nd pass: compute the sector's coverage
memset(table,0,HASHSIZE);
for (size_t i=0; i<=bufsize-sizeof(hash_t); i+=STEP)
{
uint32_t hash = hash_function(*(hash_t*)(p+i));
if ((hash§ors_mask) == sector)
table[(hash>>sectors_log) % HASHSIZE] |= 1 << (hash>>29);
}
size_t unique_hashes = 0;
for (size_t i=0; i<HASHSIZE; i++)
unique_hashes += bits[table[i]];
// Coverage is ratio of unique hashes to the total amount of hashes checked
*entropy = double(unique_hashes) / total_hashes;
//printf("\n%d sectors, %d / %d = %.2lf%%", int(sectors), int(unique_hashes), int(total_hashes), *entropy*100);
}
/**********************************************************************/
/* Supplementary code */
/**********************************************************************/
// Similar to parseInt, but the string param may have a suffix b/k/m/g/^, representing units of memory, or in the case of '^', the power of 2
size_t parseMem (char *param, int *error, char spec)
{
size_t n=0; *error=0;
char c = *param=='='? *++param : *param;
if (! (c>='0' && c<='9')) {*error=1; return 0;}
while (c>='0' && c<='9') n=n*10+c-'0', c=*++param;
switch (tolower(c? c : spec))
{
case 'b': return n;
case 'k': return n*kb;
case 'm': return n*mb;
case 'g': return n*gb;
case '^': return size_t(1)<<n;
}
*error=1; return 0;
}
// Returns a string with the amount of memory
char *showMem (size_t mem, char *result)
{
if (mem%gb==0) sprintf (result, "%.0lfGB", double(mem/gb));
else if (mem%mb==0) sprintf (result, "%.0lfMB", double(mem/mb));
else if (mem%kb==0) sprintf (result, "%.0lfKB", double(mem/kb));
else sprintf (result, "%.0lfB", double(mem));
return result;
}
int main (int argc, char **argv)
{
int bufsize = 4*mb; char temp1[100];
if (argc==1)
{
printf("%s", version);
printf("\n\nUsage: smoke [-bBUFSIZE] infiles...\nBUFSIZE examples: 64k, 16m/16, 1g; default=%s\n\n%s", showMem(bufsize,temp1), copyright);
return EXIT_FAILURE;
}
if (memcmp(argv[1],"-b",2)==0)
{
int error;
bufsize = parseMem (argv[1]+2, &error, 'm');
if (error) {printf("Bad option %s!\n", argv[1]); return EXIT_FAILURE;}
argv++, argc--;
}
char *buf = new char[bufsize];
for (int file=1; file < argc; file++)
{
FILE *infile = fopen (argv[file], "rb"); if (infile==NULL) {printf("Can't open input file %s!\n", argv[file]); return EXIT_FAILURE;}
int width = strlen(argv[file]); width = width>21? width : 21;
printf("%s%*s | min %% | avg %% | max %% | incompressible %s blocks", file>1?"\n":"", width, argv[file], showMem(bufsize,temp1));
ByteEntropy ByteS;
WordEntropy WordS;
Order1Entropy Order1S;
DWordHashEntropy DWordHashS;
DWordCoverage DWordS;
TwoPassHashCoverage<uint32_t> TwoPassDWordS;
TwoPassHashCoverage<uint64_t> TwoPassQWordS;
Entropy *smokers[] = {&ByteS, &WordS, &Order1S, &DWordHashS, &DWordS, &TwoPassDWordS, &TwoPassQWordS};
const int NumSmokers = sizeof(smokers)/sizeof(*smokers);
double entropy, min_entropy[NumSmokers], avg_entropy[NumSmokers], max_entropy[NumSmokers];
int incompressible[NumSmokers]; char incompressible_list[NumSmokers][1000];
uint64_t origsize = 0; int blocks = 0;
for(;;)
{
int bytes_read = fread(buf, 1, bufsize, infile);
if (bytes_read==0) break;
for (int i=0; i<NumSmokers; i++)
{
smokers[i]->smoke(buf, bytes_read, &entropy);
if (origsize==0) { // first block
min_entropy[i] = max_entropy[i] = entropy;
avg_entropy[i] = incompressible[i] = 0;
*incompressible_list[i] = '\0';
} else if (bytes_read==bufsize) { // update min/max entropy only on complete blocks
if (entropy < min_entropy[i])
min_entropy[i] = entropy;
if (entropy > max_entropy[i])
max_entropy[i] = entropy;
}
avg_entropy[i] += entropy*bytes_read;
if (entropy > 0.95)
{
sprintf (strchr(incompressible_list[i],'\0'),
incompressible[i]== 0? ": %d" :
incompressible[i] <10? ", %d" :
incompressible[i]==10? "..." :
"" , blocks);
++incompressible[i];
}
}
origsize += bytes_read; blocks++;
}
fclose(infile);
printf("\n"); for(int i=0; i<width; i++) printf("-"); printf("-|------:|------:|------:|----------------------------\n");
for (int i=0; i<NumSmokers; i++)
printf("%*s |%6.2lf |%6.2lf |%6.2lf | %d of %d%s\n", width, smokers[i]->name(), min_entropy[i]*100, avg_entropy[i]/origsize*100, max_entropy[i]*100, incompressible[i], blocks, (incompressible[i]<blocks? incompressible_list[i] : ""));
}
return EXIT_SUCCESS;
}