-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtemp_test.py
36 lines (34 loc) · 1.16 KB
/
temp_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# logits
logits_iph = tf.matmul(h_iph, w_iph) + b_iph # shape of logits:[batch_size*max_time, 3]
logits_normal_iph = tf.reshape( # logits in an normal way:[batch_size,max_time_stpes,3]
tensor=logits_iph,
shape=(-1, self.max_sentence_size, 3),
name="logits_normal_iph"
)
logits_iph_masked = tf.boolean_mask( # [seq_len1+seq_len2+....+,3]
tensor=logits_normal_iph,
mask=self.mask,
name="logits_iph_masked"
)
# prediction
pred_iph = tf.cast(tf.argmax(logits_iph, 1), tf.int32, name="pred_iph") # pred_iph:[batch_size*max_time,]
pred_normal_iph = tf.reshape( # pred in an normal way,[batch_size, max_time]
tensor=pred_iph,
shape=(-1, self.max_sentence_size),
name="pred_normal_iph"
)
pred_iph_masked = tf.boolean_mask( # logits_iph_masked [seq_len1+seq_len2+....+,]
tensor=pred_normal_iph,
mask=self.mask,
name="pred_iph_masked"
)
pred_normal_one_hot_iph = tf.one_hot( # one-hot the pred_normal:[batch_size, max_time,class_num]
indices=pred_normal_iph,
depth=self.class_num,
name="pred_normal_one_hot_iph"
)
# loss
self.loss_iph = tf.losses.softmax_cross_entropy(
labels=y_p_iph_masked,
logits=logits_iph_masked
)