diff --git a/source/_posts/AI.md b/source/_posts/AI.md index 24f175a6..fc35cb4f 100644 --- a/source/_posts/AI.md +++ b/source/_posts/AI.md @@ -389,7 +389,7 @@ $W^o$ to maintain shape and jointly attend to information from different represe #### FFN -Position-wise FFN (Similar to multi convolution kernels in CNN, shared parameters in every word.) +Position-wise FFN (Similar to multi convolution kernels in CNN, shared parameters in every word.) ![1714985971187](../images/AI/1714985971187.png) diff --git a/source/_posts/SolidPhysics.md b/source/_posts/SolidPhysics.md index 6b5f22bb..e26caa77 100644 --- a/source/_posts/SolidPhysics.md +++ b/source/_posts/SolidPhysics.md @@ -423,8 +423,6 @@ $$ \begin{aligned}n=&\frac{-1+\left[1+2{\left(\frac{N_D}{N_-}\right)}e^{E_i/k_BT}+...\right]}{\frac2{N_-}e^{E_i/k_BT}}\approx N_D\\\end{aligned} $$ - - 一般室温下热激发到导带的电子数也符合上式,按指数关系随温度升高而增加 (慎用!) 空穴的浓度是 @@ -513,10 +511,9 @@ $$ 迁移率 $\mu$:单位电场下载流子的平均漂移速度 $$ -\sigma=nq\mu +\sigma=nq\mu $$ - $$ j=nq\left(\mu E\right)\\ \sigma=\frac{nq^2\tau}{m^*}=nq\frac{q\tau}{m^*}=nq\mu\\ @@ -525,7 +522,6 @@ $$ $$ \sigma=nq\mu_-+pq\mu_+ - $$ 多子导电: @@ -547,3 +543,150 @@ $$ 半导体的电导率σ除了与迁移率有关外,还与载流子的浓度有关。而载流子的浓度随温度的升高以指数形式增加(饱和区除外)。因此除饱和区外,电导率主要以指数形式随温度的升高而迅速增大,表现出很强的热敏性。但是,不是温度越高就越好的,温度升高后,掺杂的特性就没了,导电能力主要由本征激发决定,相当于半导体退化成了一块普通的电阻,也没有什么 PN 结了。 这与金属的电导率有明显不同。因为金属的载流子(电子或空穴)浓度与温度无关,温度升高时,传导电子的迁移率因与声子的碰撞更加频繁而减小,所以金属的导电率温度系数为负,温度升高,电导率下降。 + +## PN 结 + +### 功函数 + +金属发射电流与温度有关,符合指数规律: + +$$ +j\propto e^{\large-\frac{W}{k_BT}} +$$ + +其中 $W$ 称功函数。 + +经典理论: + +$$ +j=-n_0q\left(\frac{k_BT}{2\pi m}\right)^{1/2}e^{-\frac\chi{k_BT}} +$$ + +功函数: + +$$ +W = \chi +$$ + +统计分布: + +$$ +dn=n_0\left(\frac m{2\pi k_BT}\right)^{3/2}e^{-\frac{m\upsilon^2}{2k_BT}}d\upsilon +$$ + +量子理论: + +$$ +j=-q\frac{4\pi m{\left(k_BT\right)}^2}{\left(2\pi\hbar\right)^3}e^{-\left(\chi-E_F\right)/k_BT} +$$ + +功函数 + +$$ +W = \chi - E_F +$$ + +统计分布: + +$$ +dn=2{\left(\frac m{2\pi\hbar}\right)}^3\frac1{e^{\left(\frac12m\upsilon^2-E_F\right)/k_BT}+1}d\upsilon +$$ + +金属有接触电势,从费米能级高的地方流向费米能级低的。 + +![1715657785337](../images/SolidPhysics/1715657785337.png) + +$$ +V_A - V_B = (W_B - W_A)/q +$$ + +平衡态下,费米能级变为相等,电子不再流动。 + +### PN 结 + +载流子扩散运动: + +![1715658350241](../images/SolidPhysics/1715658350241.png) + +非平衡载流子:复合运动 + +在外界的作用下,半导体中的电子浓度n和空穴浓度p有可 +能偏离平衡值。例如半导体的本征光吸收产生电子—空穴 +对,用Δn=n-n0,Δp=p-p0表示超出热平衡的多余载流 +子,称为非平衡载流子。通常情况下,由于电中性要求, +Δn=Δp + +我们最关心的是非平衡的少数载流子,因为少子的浓度变化大,通常采用准费米能级 $E_{Fn}, E_{Fp}$。多子的费米能级不变。 + +$$ +\begin{aligned}n_0+\Delta n&=n_i\exp(\frac{E_{Fn}-E_{Fi}}{kT})\\\left(n_0+\Delta n\right)\cdot\left(p_0+\Delta p\right)>n_i^2\\p_0+\Delta p&=n_i\exp(\frac{E_{Fi}-E_{Fp}}{kT})\end{aligned} +$$ + +![1715658620805](../images/SolidPhysics/1715658620805.png) + +外界作用下, 非平衡态要恢复到平衡态。非平衡的载流子会消失,消失的过程叫复合,导带的多余电子落回价带,多余的电子和空穴成对消失。 + +复合速率: + +$$ +\frac{d\Delta n}{dt}=-\frac{\Delta n}{\tau}\\\text{其解为:}\quad\Delta n=(\Delta n)_0\exp(-t/\tau) +$$ + +$\tau$ 称为非平衡载流子寿命 + +#### 非平衡载流子的扩散和复合 + +直接复合:复合率 $R=\alpha_r\cdot n\cdot p$ + +间接复合:通过杂质能级的间接复合(与杂质浓度呈正比,与非平衡载流子浓度呈正比,深能级更强) + +非平衡状态下,过剩电子的复合率一定等于过剩空穴的复合率 + +$$ +R_n^{\prime}=R_p^{\prime} +$$ + +扩散复合过程的稳定分布: + + +$$ +-\frac d{dx}\Bigg(-D\frac{dN}{dx}\Bigg)-\frac N\tau=0\\N=N_0e^{-x/L},L=\sqrt{D\tau} +$$ + +扩散长度L:表面非平衡载流子深入材料内部的距离,随扩散系数和复合寿命增加而增加 + +$$ +\text{扩散流密度 }=-D\frac{dN}{dx}=N_0\frac DLe^{-x/L} +$$ + +扩散速度D/L:界面处载流子以速度D/L运动 + +漂移 + 扩散 的总电流密度: + +$$ +J=qn\mu_nE_x+qp\mu_pE_x+qD_n\frac{dn}{dx}-qD_p\frac{dp}{dx} +$$ + +爱因斯坦关系: + +$$ +\frac{D_n}{\mu_n}=\frac{k_\text{B}T}q\quad\frac{D_p}{\mu_p}=\frac{k_\text{B}T}q +$$ + +#### PN 结的接触电势差 + +![1715659347111](../images/SolidPhysics/1715659347111.png) + +$$ +eV_D=\left(E_F\right)_N-\left(E_F\right)_P\\qV_D=\left(E_F\right)_N-\left(E_F\right)_P +$$ + + +$$ + + +$$ + +$V_D$ 等于接触前的费米能级差。 + +![1715659894626](../images/SolidPhysics/1715659894626.png) diff --git a/source/images/SolidPhysics/1715657785337.png b/source/images/SolidPhysics/1715657785337.png new file mode 100644 index 00000000..a648fb3c Binary files /dev/null and b/source/images/SolidPhysics/1715657785337.png differ diff --git a/source/images/SolidPhysics/1715658350241.png b/source/images/SolidPhysics/1715658350241.png new file mode 100644 index 00000000..a6452a7a Binary files /dev/null and b/source/images/SolidPhysics/1715658350241.png differ diff --git a/source/images/SolidPhysics/1715658620805.png b/source/images/SolidPhysics/1715658620805.png new file mode 100644 index 00000000..82952ff5 Binary files /dev/null and b/source/images/SolidPhysics/1715658620805.png differ diff --git a/source/images/SolidPhysics/1715659347111.png b/source/images/SolidPhysics/1715659347111.png new file mode 100644 index 00000000..b426252c Binary files /dev/null and b/source/images/SolidPhysics/1715659347111.png differ diff --git a/source/images/SolidPhysics/1715659894626.png b/source/images/SolidPhysics/1715659894626.png new file mode 100644 index 00000000..e3d65c4c Binary files /dev/null and b/source/images/SolidPhysics/1715659894626.png differ