forked from martavp/MESM_project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlotting.py
251 lines (216 loc) · 9.41 KB
/
Plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python
# coding: utf-8
import pypsa
import cartopy
import cartopy.crs as ccrs
import cartopy.mpl.geoaxes
from matplotlib.patches import Circle, Ellipse
from matplotlib.legend_handler import HandlerPatch
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def assign_location(n):
for c in n.iterate_components(n.one_port_components | n.branch_components):
ifind = pd.Series(c.df.index.str.find(" ", start=3), c.df.index)
for i in ifind.value_counts().index:
# these have already been assigned defaults
if i == -1:
continue
names = ifind.index[ifind == i]
c.df.loc[names, 'location'] = names.str[:i]
def rename_techs(label):
# prefix_to_remove = ["residential ","services ","urban ","rural ","central ","decentral "]
# rename_if_contains = ["CHP","gas boiler","biogas"]
# rename_if_contains_dict = {"battery" : "battery storage"}
rename = {"solar" : "solar PV",
"offshorewind" : "offshore wind",
"offshorewind-ac" : "offshore wind (AC)",
"offshorewind-dc" : "offshore wind (DC)",
"onshorewind" : "onshore wind",
"ror" : "hydroelectricity",
"hydro" : "hydroelectricity",
"PHS" : "hydroelectricity",
"AC": "transmission"}
# for ptr in prefix_to_remove:
# if label[:len(ptr)] == ptr:
# label = label[len(ptr):]
# for rif in rename_if_contains:
# if rif in label:
# label = rif
# for old,new in rename_if_contains_dict.items():
# if old in label:
# label = new
for old,new in rename.items():
if old == label:
label = new
return label
def rename_techs_tyndp(tech):
tech = rename_techs(tech)
# if "heat pump" in tech or "resistive heater" in tech:
# return "power-to-heat"
# elif tech in ["methanation", "hydrogen storage", "helmeth"]:
# return "power-to-gas"
if tech == 'OCGT':
return 'gas'
# elif tech in ["CHP", "gas boiler"]:
# return "gas-to-power/heat"
elif "solar" in tech:
return "solar PV"
# elif tech == "Fischer-Tropsch":
# return "power-to-liquid"
# elif "offshore wind" in tech:
# return "offshore wind"
else:
return tech
def make_legend_circles_for(sizes, scale=1.0, **kw):
return [Circle((0, 0), radius=(s / scale)**0.5, **kw) for s in sizes]
def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False):
fig = ax.get_figure()
def axes2pt():
return np.diff(ax.transData.transform([(0, 0), (1, 1)]), axis=0)[
0] * (72. / fig.dpi)
ellipses = []
if not dont_resize_actively:
def update_width_height(event):
dist = axes2pt()
for e, radius in ellipses:
e.width, e.height = 2. * radius * dist
fig.canvas.mpl_connect('resize_event', update_width_height)
ax.callbacks.connect('xlim_changed', update_width_height)
ax.callbacks.connect('ylim_changed', update_width_height)
def legend_circle_handler(legend, orig_handle, xdescent, ydescent,
width, height, fontsize):
w, h = 2. * orig_handle.get_radius() * axes2pt()
e = Ellipse(xy=(0.5 * width - 0.5 * xdescent, 0.5 *
height - 0.5 * ydescent), width=w, height=w)
ellipses.append((e, orig_handle.get_radius()))
return e
return {Circle: HandlerPatch(patch_func=legend_circle_handler)}
def plot_map(network, tech_colors, threshold=10,components=["links", "stores", "generators"],
bus_size_factor=1e6, transmission=True):
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
n = network.copy()
assign_location(n)
preferred_order = pd.Index(["transmission","onshore wind","offshore wind",
"solar PV","gas","H2"])
# Drop non-electric buses so they don't clutter the plot
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
costs = pd.DataFrame(index=n.buses.index)
capacity = pd.DataFrame(index=n.buses.index)
if "stores" in components:
legend_size = n.stores.e_nom_opt.max()
unit_string = 'GWh'
plot_item = 'storage'
else:
legend_size = n.generators.groupby('bus').sum().p_nom_opt.max()
unit_string = 'GW'
plot_item = 'power'
for comp in components:
df_c = getattr(n, comp)
if len(df_c) == 0:
continue # Some countries might not have e.g. storage_units
df_c["nice_group"] = df_c.carrier.map(rename_techs_tyndp)
attr = "e_nom_opt" if comp == "stores" else "p_nom_opt"
capacity_c = ((df_c[attr])
.groupby([df_c.location, df_c.nice_group]).sum()
.unstack().fillna(0.))
costs_c = ((df_c.capital_cost * df_c[attr])
.groupby([df_c.location, df_c.nice_group]).sum()
.unstack().fillna(0.))
costs = pd.concat([costs, costs_c], axis=1)
capacity = pd.concat([capacity, capacity_c], axis=1)
plot = capacity.groupby(capacity.columns, axis=1).sum()
plot.drop(columns=plot.sum().loc[plot.sum() < threshold].index,inplace=True)
technologies = plot.columns
plot.drop(list(plot.columns[(plot == 0.).all()]), axis=1, inplace=True)
new_columns = preferred_order[preferred_order.isin(plot.columns)]
plot = plot[new_columns]
for item in new_columns:
if item not in tech_colors:
print("Warning!",item,"not defined in tech_colors")
plot = plot.stack() # .sort_index()
to_drop = plot.index.levels[0].symmetric_difference(n.buses.index)
if len(to_drop) != 0:
print("dropping non-buses", to_drop)
plot.drop(to_drop, level=0, inplace=True, axis=0)
# make sure they are removed from index
plot.index = pd.MultiIndex.from_tuples(plot.index.values)
# PDF has minimum width, so set these to zero
line_lower_threshold = 100
line_upper_threshold = 1000
linewidth_factor = 50
ac_color = "gray"
dc_color = "m"
links = n.links
lines = n.lines
line_widths = lines.s_nom_opt - lines.s_nom
link_widths = links.p_nom_opt - links.p_nom
if transmission:
line_widths = lines.s_nom_opt
link_widths = links.p_nom_opt
linewidth_factor = 50
line_lower_threshold = 0.
line_widths[line_widths < line_lower_threshold] = 0.
link_widths[link_widths < line_lower_threshold] = 0.
line_widths[line_widths > line_upper_threshold] = line_upper_threshold
link_widths[link_widths > line_upper_threshold] = line_upper_threshold
fig.set_size_inches(16, 12)
n.plot(bus_sizes=plot / bus_size_factor,
bus_colors=tech_colors,
line_colors=ac_color,
link_colors=ac_color,
line_widths=line_widths / linewidth_factor,
link_widths=link_widths / linewidth_factor,
ax=ax,
boundaries=(n.buses.x[n.buses.x>0].min()-5,
n.buses.x[n.buses.x>0].max()+5,
n.buses.y[n.buses.y>0].min()-5,
n.buses.y[n.buses.y>0].max()+5),
color_geomap={'ocean': 'lightblue', 'land': "palegoldenrod"})
for i in technologies:
ax.plot([0,0],[1,1],label=i,color=tech_colors[i],lw=5)
fig.legend(loc='center right', frameon=False,borderaxespad=1)
fig.suptitle('Installed ' + plot_item + ' capacities and transmission lines',y=0.92,fontsize=15)
handles = make_legend_circles_for(
[legend_size/10,legend_size], scale=bus_size_factor, facecolor="white")
str1 = [" {:10.0f} ".format(s) for s in (legend_size/10,legend_size)]
labels = [x + unit_string for x in str1]
l1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.05, 0.96),
labelspacing=4,
frameon=False,
title='',
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l1)
handles = []
labels = []
for s in (1000, 100):
handles.append(plt.Line2D([0], [0], color=ac_color,
linewidth=s / linewidth_factor))
labels.append("{} MW".format(s))
l2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.3, 0.96),
frameon=False,
labelspacing=4, handletextpad=1.5,
title='')
ax.add_artist(l2)
def line_plot_generation(n,c):
plt.plot(n.loads_t.p[c][0:96], color='black', label='demand')
plt.plot(n.generators_t.p[c + ' onshorewind'][0:96], color='blue', label='onshore wind')
plt.plot(n.generators_t.p[c + ' solar'][0:96], color='orange', label='solar')
plt.plot(n.generators_t.p[c + ' OCGT'][0:96], color='brown', label='gas (OCGT)')
plt.legend(fancybox=True, shadow=True, loc='best')
def pie_chart_generation(n,c):
labels = ['onshore wind',
'solar',
'gas (OCGT)']
sizes = [n.generators_t.p[c + ' onshorewind'].sum(),
n.generators_t.p[c + ' solar'].sum(),
n.generators_t.p[c + ' OCGT'].sum()]
colors=['blue', 'orange', 'brown']
plt.pie(sizes,
colors=colors,
labels=labels,
wedgeprops={'linewidth':0})
plt.axis('equal')
plt.title('Electricity mix ' + c, y=1.07)