-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
87 lines (64 loc) · 3.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python3
import panorama
import plots
from skimage import io
import numpy as np
# ------------------------------------------------------------------------------------------
# Part 0
# ------------------------------------------------------------------------------------------
pano_image_collection = io.ImageCollection('jpeg/lowres/9_*.jpg',
load_func=lambda f: io.imread(f).astype(np.float64) / 255)
# plots.plot_collage(pano_image_collection, title=f"Image collection size: {len(pano_image_collection)}")
# ------------------------------------------------------------------------------------------
# Part 1
# ------------------------------------------------------------------------------------------
# img = pano_image_collection[0]
# keypoints, descriptors = panorama.find_orb(img)
#
# plots.plot_keypoints(img, keypoints)
# ------------------------------------------------------------------------------------------
# Part 2 and 3
# ------------------------------------------------------------------------------------------
# src, dest = pano_image_collection[0], pano_image_collection[1]
# src_keypoints, src_descriptors = panorama.find_orb(src)
# dest_keypoints, dest_descriptors = panorama.find_orb(dest)
#
# robust_transform, matches = panorama.ransac_transform(src_keypoints, src_descriptors, dest_keypoints, dest_descriptors, return_matches=True)
#
# plots.plot_inliers(src, dest, src_keypoints, dest_keypoints, matches)
# ------------------------------------------------------------------------------------------
# Part 4
# ------------------------------------------------------------------------------------------
keypoints, descriptors = zip(*(panorama.find_orb(img) for img in pano_image_collection))
forward_transforms = tuple(panorama.ransac_transform(src_kp, src_desc, dest_kp, dest_desc)
for src_kp, src_desc, dest_kp, dest_desc
in zip(keypoints[:-1], descriptors[:-1], keypoints[1:], descriptors[1:]))
simple_center_warps = panorama.find_simple_center_warps(forward_transforms)
# corners = tuple(panorama.get_corners(pano_image_collection, simple_center_warps))
# min_coords, max_coords = panorama.get_min_max_coords(corners)
# center_img = pano_image_collection[(len(pano_image_collection) - 1) // 2]
#
# plots.plot_warps(corners, min_coords=min_coords, max_coords=max_coords, img=center_img)
final_center_warps, output_shape = panorama.get_final_center_warps(pano_image_collection, simple_center_warps)
corners = tuple(panorama.get_corners(pano_image_collection, final_center_warps))
plots.plot_warps(corners, output_shape=output_shape)
# ------------------------------------------------------------------------------------------
# Part 5
# ------------------------------------------------------------------------------------------
# result = panorama.merge_pano(pano_image_collection, final_center_warps, output_shape)
#
# plots.plot_result(result)
# io.imsave('./results/base_pano.jpeg', result)
# ------------------------------------------------------------------------------------------
# Part 6
# ------------------------------------------------------------------------------------------
# img = pano_image_collection[0]
#
# laplacian_pyramid = panorama.get_laplacian_pyramid(img)
# merged_img = panorama.merge_laplacian_pyramid(laplacian_pyramid)
#
# plots.plot_gauss(img, merged_img)
# plots.plot_collage(panorama.increase_contrast(laplacian_pyramid), columns=2, rows=2)
result = panorama.gaussian_merge_pano(pano_image_collection, final_center_warps, output_shape)
plots.plot_result(result)
io.imsave('./results/improved_pano.jpeg', result)